
Legacy Fortran Software: Applying Syntactic
Metrics to Global Climate Models

Mariano Méndez1, Jeffrey Overbey2, Fernando G. Tinetti1�

1 III-LIDI, Fac. de Informática, Universidad Nacional de La Plata
50 y 120, La Plata, Buenos Aires, Argentina

2 National Center for Supercomputing Applications
University of Illinois at Urbana-Champaign

1205 W. Clark St. Room 1008 Urbana, Illinois, USA

Abstract. It is difficult to maintain legacy Fortran programs that use
outdated programming constructs, especially when this maintenance re-
quires a detailed understanding of the code (e.g., for parallelization).
Initially, we want to gauge the prevalence of such constructs by apply-
ing straightforward syntactic metrics to some well-known global climate
models. Detailed information regarding files, subroutines, and loops has
been collected from each model by applying a lightweight source code
static analysis based on ASTs (Abstract Syntax Tree) for a posterior
analysis. Modernizing Fortran Legacy programs is still a challenge. Our
objective has been to collect relevant information on these programs
to help us approach parallelizing legacy scientific programs in a shared
memory environment (e.g. using multi-core processors). The data we
collected indicate that old Fortran features are still being used on these
models in these days. Furthermore, we propose some metrics to be used
as a guide to determine how many changes a program needs in order to
be modernized, optimized, and eventually, parallelized.

Key words: Source Code Modernization, HPC, Legacy Systems, For-
tran Legacy Systems

1 Introduction

Over the last 50 years, Fortran has been a very popular programming language
among scientists for building scientific software. Another particular aspect of this
programming language that makes it a very interesting subject for a study is its
long lived history. The Mathematical Formula Translating System (Fortran)
was born in 1952. Contrary to popular belief among software engineers, this
language is still widely used. The area of scientific computing, or rather, the area
of numerical processing has been producing Fortran software over many decades.
Throughout this period of time, most of the effort in the context of software
engineering has been focused on the development process of new software rather
than on other stages of the software life cycle. It is widely known that the

� Comisión de Investigaciones Cient́ıficas de la Prov. de Bs. As.

CACIC 2012 - Anales del XVIII Congreso Argentino de Ciencias de la Computación 847



maintenance stage takes up most of the cost involved in developing software,
however this stage is not widely studied. By 1979, some studies had shown that
the software maintenance costs was about 67% of the total project costs [20],
in 2000 there was a report showing that this cost had grown to the 90% of the
entire project cost [5]. Also, by 1983 studies conducted on software maintenance
had revealed that 50% of the time was devoted to understanding the program
[6]. In the year 2000, the number of legacy source code lines was calculated to
be 250.000 billion in [17].

1.1 Legacy: Modernizing & Parallelization

There is not a formal definition of what a Legacy System is. But we can summa-
rize the Legacy System concept as follows: “Legacy Software is critical software
that cannot be modified efficiently” [7]. All the definitions have various things in
common. One of them is resistance to change and another one is how this kind
of software has become critical to the organization. An important concept that
goes hand in hand with these definitions is the inherent complexity of legacy
software. Legacy software poses a particular challenge in the maintenance stage.
In this stage, software that has been running in production for 20 or 30 years is
hard to manage because software gradually deteriorates. During maintenance, a
program may need different types of changes. Enhancements, corrections, adap-
tations and preventions to a system may be needed. All of these tasks require
knowledge and comprehension of the system.

From an “Unknown” to a “Manageable” Project. If we are determined
to modernize or parallelize an old Fortran source code and if it can be considered
a legacy program, we should, as a first step, break through from the “Unknown”
to a “Manageable” process. There is a set of issues that are generally found
in Fortran Legacy Source Code [19], such as the following: software seems to
have been built with old design styles, documentation is rarely found, different
programming styles are found among source code lines, and the wide usage of
Common Blocks, defined as mechanisms for sharing memory among subroutines.

Enhancing different aspects. We have measured some source code charac-
teristics in order to determine: how many changes on source code should be
applied, which kind of source transformation should be applied on it, and to
obtain information to help us quantify the changes needed. In order to gather
these data we have focused our analysis on a small set of scientific applications
in the field of climatology. We have worked on Global Climate Models (GCM)
by performing a detailed measurement on their source code. “Our purpose has
been purely scientific in an attempt to find how things are, without moralizing
or judging people’s competence” [9] or their work. We have the following goals
for legacy software: modernization, upgrading and parallelization, turning it into
a manageable program, and leaving it ready for further changes in the future.

CACIC 2012 - Anales del XVIII Congreso Argentino de Ciencias de la Computación 848



Modernization. Fortran has faced a particular evolution throughout its own
life. It has been the first high level programming language to have its own ASA
(American Standard Association) standard (now ANSI) [2]. It was known as
FORTRAN 66; during the last 46 years this standard has been revised five times
(1978, 1991, 1997, 2004, 2010) [13]. This evolutionary process brought about
changes in the language such as: new language features, the deletion of some
language constructions, the obsolescence of language features. Even when obso-
lete features were deleted, compatibility remained: “Unlike Fortran 90, Fortran
95 was not a superset; it deleted a small number of so-called obsolescent features.
This incompatibility is more theoretical than real however, as all existing For-
tran 95 compilers include the deleted features as extensions” [10]. Modernizing
and updating old FORTRAN source code has become an important objective
because a large set of programs written years ago are still operative these days.
A good example can be found in scientific software.

Parallelization. A major problem to deal with is the need for better perfor-
mance. One reliable option is taking advantage of parallel processing by using
shared memory parallel hardware. Even though multi-core processors are widely
spread even in small scale computers, their facilities are not fully exploited. A
good starting point when it comes to taking advantage of shared memory paral-
lel processing is to use libraries or facilities like those provided by threading. But
if we venture into the parallelization task, we will find some obstacles closely re-
lated with the aforementioned modernization issues. There are Fortran programs
which present a large set of old language features such as: fixed format without
any indentation, obsolete language features still in use, deleted language fea-
tures which are being used, and so forth. These features make the parallelization
process a very hard and error prone task.

2 Several Metrics: The Rational

The information gathering process has been divided into 4 categories, each one
related to: files, subroutines, Modules, and Do Loops. The information has been
gathered and exported into comma-separated value (CSV) files to be analysed.
For each file, subroutine or module found in a program we have measured data
as shown in Table 1. In addition, we have taken the following measurements for
each file:

– Number of Fortran Include Lines: Fortran has its own INCLUDE statement.

– Number of Preprocessor directives: a set of distinct preprocessor directives
has been quantified such as: Conditional Directives, Conditional Constructs,
Inclusion, Macro Definitions, Pragmas and Controls.

– Two metrics per KLOC: number of Go To statement per file KLOC and
number of obsolete features (listed in the Appendix B of the Fortran 2008
standard) per file KLOC.

CACIC 2012 - Anales del XVIII Congreso Argentino de Ciencias de la Computación 849



Also, for each Do Loop found in a program source code, a detailed analysis
was conducted in order to collect: number of source lines in Do Loops, I/O
operations in the loop, subroutine calls performed, assignments, IF statements,
Go To statements and OpenMP directives.

Feature F M S D

Sloc X X X X
NbNcSloc X X X
Logical Executable SLOC X X X
Subroutines X X
Functions X X
Procedures X X
Pubblic Subroutine X
Public Function X
Use Satement X
Use Stmt With Only X
Public Procedures X
Private Procedures X
Variables X
PublicVar X
PrivateVar X
percentage Of Parameter X
Files Use X
Files Declare X
Goto X X X
Assigned Goto X X
Arithmetic If X X
Stmt Functions X X
Entry X X
ComputedGoto X X
Pause X X
Do X X X
Common Blocks X X

Feature F M S D

Parameter X
Intent In X
Intent Out X
Intent In/Out X
If X
Else X
End If X
End Do X
Continue X
Stop X
Return X
Call X X
Dimension X
Select Case Stmt X
Print X X
Write X X
Read X X
Format X
Continue Stmt X
Obsolete Operator X
Assignement X X
OpenMP Directives X X
New Style Do Loops X X
Do While X X
Old Style Do Loop X X
Shared Do Loop X X
Do Loop Nested Levels X X

Table 1. F:file, M:Module, S:Subroutine, D:DO statement

Implementation. As a first step, we have used a tool to determine in which
programming language these programs have been coded. To perform this analysis
a tool called CLoC [22] has been used. We have conducted further analysis of
the source code by using Abstract Syntax Trees (AST), i.e. a large number of
Fortran source code lines have been transformed into an AST structure. These
metrics have been implemented using Photran [21].

3 Global Climate Models

Among scientific software, Global Climate Models have some distinctive features
that make them an attractive case study. The first one is the preponderant im-
pact that they have in a world where climate change is a highly controversial
phenomenon. Results emerging from these models have helped climatologist to
shed light on the reasons behind global warming. The second interesting fea-
ture is related to the fact that GCMs are focused on one specific problem in its
entirety. This stands in direct contraposition to synthetic programs or compute-
intensive benchmark software used to evaluate certain features from a high per-
formance system. Another good reason to select this kind of software, lies on the
fact that they are running in a production environment. Hence, they are being
satisfactorily evaluated from the perspective of the specific problem to be solved.

CACIC 2012 - Anales del XVIII Congreso Argentino de Ciencias de la Computación 850



Finally, these programs are founded on mathematical and numerical models that
represent the physical phenomena involved (climate in this case).

A set of six models has been selected from CMIP5 [18], including models from
all over the world. Some of these models are licensed only for lawful scientific
purposes in research and education, while others are completely free:

– GISS-AOM:(C4x3) from GISS, the NASA Goddard Institute for Space
Studies [15].

– GISS-ER: ModelE20/Russell 4x5xL20 from GISS, the NASA Goddard In-
stitute for Space Studies [16].

– CSIRO Mk3: from Commonwealth Scientific and Industrial Research Or-
ganization in collaboration with Queensland Climate Change Centre of Ex-
cellence [8].

– IPSL: from Institut Pierre-Simon Laplace [11].
– COSMOS: The COSMOS-1.2.1.1 package includes model codes of ECHAM5,

ECHAM5J, MPIOM, and HAMOCC, and the OASIS coupler from The Max
Planck Institute for Meteorology [14].

– BCC-CSM1.1 from Beijing Climate Center, China Meteorological Admin-
istration [4]

4 Results

An example of the results gathered from CLoC analysis can be seen in Table 2.

COSMOS CSIRO-Mk3L GISS-ER-ModelE

Lang. Files blank comment code Lang. Files blank comment code Lang. Files blank comment code

F 90 551 34040 63827 163353 F 77 329 7670 6612 48242 Fortran 77 428 28900 76211 252999
F 77 436 2149 62077 61731 F 90 47 924 1635 6947 Fortran 90 118 10844 11646 56911
C/C++ H 728 3914 275 25673 IDL 59 1110 1883 5721 HTML 8 605 33 5250
K Shell 39 811 1618 6575 C Shell 12 127 405 255 Perl 18 568 628 3037
C 11 1724 1826 6280 make 8 90 131 208 B Shell 23 544 377 2131
V. Basic 6 343 0 4942 SUM: 455 9921 0666 61373 make 17 317 90 915
bash 2 410 355 2309 K Shell 10 122 117 509
B Shell 11 398 212 2265 Lang. GISS-AOM-4x3 C/C++ H 8 36 0 307
make 20 356 131 629 F 77 14 10 6547 16707 Python 2 47 54 202
C++ 16 0 0 267 K Shell 6 36 66 232 m4 3 56 294 145
Pascal 3 4 0 255 B Shell 1 1 0 8 Pascal 2 1 0 117
Python 1 101 126 221 SUM: 21 47 6613 16947 C 1 22 23 42
T def 3 100 191 112
awk 2 8 14 27 SUM: 638 42062 89473 322565
Assembly 1 31 0 8
XML 1 2 0 5
SUM: 1831 44391 130652 274652

Table 2. Programming Language composition of COSMOS, CSIRO-Mk3L, GISS-ER-ModelE and GISS AOM 4x3
models

From the data collected it is undeniable and obvious that most of these models
have been built mostly with Fortran. Another remarkable aspect that can be
observed is the fact that there is a set of these models built solely with Fortran
and shell script (bash or csh). The source code analysis has been conducted
over 1.085.663 lines from 3840 Fortran source code files, resulting in 1.133.430
Fortran lines of code after the inclusion files were processed. Some interesting
points resulting from the source code analysis are:

CACIC 2012 - Anales del XVIII Congreso Argentino de Ciencias de la Computación 851



1. A contrast has been made with a previous work (hand made) performed
by Donald Knuth in 1971 regarding 250.000 FORTRAN source code lines.
There are some remarkable aspects to take into account. The first one is the
reduction of Go To statements from 13% to 1,05%, the decrease of Format
statements from 4% to 0,73% and Equivalence statements decreased from
0,7% to 0,04%. But surprisingly these features are found in modern pro-
grams: most of these models were built between 1990 and 2010. The second
important aspect is the fact that new language features such as Functions,
End If, End Do and Select Case statements represent approximately only
14% of the total number of statements. The third one is related to the find-
ing of most of the language features labelled as obsolete in the Appendix
B in the Fortran 2008 standard, from the Fortran 90 standard [1]. Some
of these features that have been found were Arithmetic IF statements (91),
Entry statements (206), Computed Go To statements (39), and others.

GCMs Lockheed

Statements Number Percentage Number Percentage
Assignement 212167 43,63 78435 41
If 50556 10,40 27967 14,5
Gotos 5129 1,05 24942 13,0
Call 42564 8,75 15125 8,0
Continue 9623 1,98 9165 5,0
Write 17748 3,65 7795 4.0
Format 1775 0,37 7685 4,0
Do 39322 8,09 7476 4,0
Data 2257 0,46 4468 2,0
Return 6277 1,29 3639 2,0
Dimension 6059 1,25 3492 2,0
Common 818 0,17 2908 1,5
Subroutine 8154 1,68 2001 1,0
Rewind 100 0,02 1724 1.0
Equivalence 187 0,04 1382 0,7
EndFile 2 0,00 765 0,4
Read 2573 0,53 586 0,3
Print 2467 0,51 345 0,2
Entry 206 0,04 279 0,1

GCMs Lockheed

Statements Number Percentage Number Percentage
Stop 2150 0,44 190 0,1
Pause 6 0,00 57
Assign 13 0,00 57
External 738 0,15 23
Implicit 5663 1,16 0
NameList 102 0,02 5
BlockData 25 0,01 1
Other 7286 3,2

Computed Got 39 0,00
Assigned Goto 4 0,00 -
Arithmetic If 91 0,02 -
Function 1370 0,28 -
Stmt Function 0 0,00 -
End If 30516 6,28 -
End Do 26884 5,53 -
Else Stmt 9892 2,03 -
Select Case 841 0,17 -
TOTAL 486318 100 207941 100

Table 3. Distribution of Fortran statements types in GCMs and in [9]

2. Go To statements: We also measured the number of Go To statements per
KLOC, since this can substantially hinder understandability. Programmers
have been trying to avoid the inclusion of Go To statements in source code
[3], and a high Go To density could prohibit modernizing or parallelizing
the code. Spaghetti code is very complex to understand, making the mod-
ernizing process more difficult to achieve. Table 4 shows the density of Go
To statements for each model. Some of these values are very descriptive of
how many Go To statements should be removed from the source code. Go
To statement is one of the most undesirable features to find in modern pro-
grams.The total number of Go To statements in all of the models is 5129,
resulting in 4,53 Go To statements per thousand lines of code overall.

3. Obsolete Features: The more obsolete features found in the code, the
more difficult the modernization tasks become. Counting the number of oc-
currences of obsolete features helps programmers to get a quick idea of how
old the source code is. This metric has been applied to the models, see
Table 5. Source code can be improved by applying some automatic source

CACIC 2012 - Anales del XVIII Congreso Argentino de Ciencias de la Computación 852



code transformations in order to enhance code readability. Several transfor-
mations are currently available in Photran. After the transformations were
applied, the obsolete features per KLOC (OF/KLOC) were reduced from
72,53 OF/KLOC to 53,60 OF/KLOC. In other words, automated transfor-
mations were able to remove 20 uses of obsolete features for every 1000 lines
of code. Therefore, the use of automated source code transformation tools
have a preponderant impact in the source code modernization tasks.

Model Num. of Stmts Go To / KLOC
All Model 4,52
GissAOM 1395 34,91
GissER 1766 5,59
CSIRO 368 3,86
ipsl 251 0,14
Cosmos 1045 2,55
BCC-CSM 304 3,16
Table 4. number of Go To statements per
KLOC

Model Number OF / KLOC
all GCMs 4810 4,82
Giss AOM 1636 72,53
Giss ER 2685 9,58
Csiro 1788 23,29
ipsl 467 2,75
COSMOS 1194 3,15
BCC-CSM 6261 3,80
Table 5. number of Fortran language ob-
solete features listed in the standard per
KLOC

4. Do Loops: In a previous work [12] we have studied different types of DO
loop styles, such as old style Do Loops; (e.g. Do Loops that end in a labelled
statement). In this work we have measured which types of DO were found
in the code. From this analysis we have obtained some remarkable results,
see Table 6 and Table 7:
(a) No Do While statements have been found in the source code.
(b) The 8% of the total DO loops have been recognized as Shared DO loops

which have been marked as an obsolete feature since the advent of For-
tran 90 standard.

(c) The 30,89% of the total DO loops in the source code have been labelled
as old style do loops.

Number
DO Loops 40039
New Style DO Loops 27667
Old Style DO Loops 12372
Shared DO Loops 3407
Table 6. Type of Do loops Analysed

Model NSDL/KLOC OSDL/ KLOC
AOM 0 40,50
CSIRO 21,35 30,46
modelE 25,58 8,59
ipsl 6,55 0,85
Cosmos 6,23 0,37
BCC-CSM 3,69 0,08
Table 7. number of DO Types per
KLOC

Table 7 in particular, shows that some models are updated in terms of Do
Loops (e.g. BCC-CSM) while others should be updated before more elabo-
rate transformations are applied (e.g. AOM).

5. Number of Nested Do Loops: Do Loops size and depth level have been
analysed. Table 8 shows the depth of Do Loop statements in levels and their
percentage. Figure 1 shows the distribution of the DO loop nested levels

CACIC 2012 - Anales del XVIII Congreso Argentino de Ciencias de la Computación 853



through each model. Taking into account that most of the runtime is used

Depth 1 2 3 4 5 6 7
Number 19467 13520 5245 1456 285 58 8
Per cent 48,62 33,76 13,09 3,63 0,71 0,14 0,01

Table 8. Depth of nested levels from 40039 Do Loop statements analysed

in Do Loops, more nesting provides more opportunities and more flexibility
for parallelization. For example, inner loops may be vectorized, while outer
loops may provide opportunities for more coarse-grained parallelism.

Fig. 1. Depth of nested levels on each Global Climate Model analysed

6. Percentage of parallelized source code: We also measured the number
of Do loops that have already been parallelized using OpenMP. The size in
lines of code (LOC) has been collected and finally compared with the total
LOC. From this analysis, we can conclude that 7% of the total lines of source
code are enclosed within OpenMP directives. This information will support
some further analysis once the code is run in a parallel environment.

5 Conclusions and Further Work

GCMs have been gaining momentum over the last years because of their impact
in climate research on global warming. There are many scientific institutions
working and spending resources on these programs. In this article, we have anal-
ysed how these programs have been built with a view on where and how they
can be improved, updated or modernized. Since the ultimate goal is paralleliza-
tion, we have included some metrics specifically focused on the code most likely
to be parallelized: Do Loops. Other specific metrics have shown that old and
obsolete features are still in use. Some of them are very complex to eliminate or
update, such as Go To statements. On the other hand, there are some features

CACIC 2012 - Anales del XVIII Congreso Argentino de Ciencias de la Computación 854



that can be easily modernized with a good source code transformation tool, like
those found in modern IDEs. In addition, these improvements can be measured
by using the same metrics.

Future work will attempt to analyse a larger set of Fortran source code gath-
ered from the internet in order to try to determine how Fortran source code is
structured. More metrics could be added to the analysis. Combining these with
the ones introduced in this work may lead to more useful information or insight
for optimization and/or parallelization. We still have to address two main issues
regarding metrics and their usefulness: 1) combining static with dynamic mea-
surements (such as runtime profiles and traces), and 2) quantitative/objective
measurement on likelihood and/or complexity and feasibility for parallelization
in shared as well as distributed memory parallel hardware.

References

1. American National Standards Institute. American National Standard for program-
ming language, FORTRAN — extended: ANSI X3.198-1992: ISO/IEC 1539: 1991
(E). American National Standards Institute, September 1992.

2. B. Bates. C# as a first language: a comparison with c++. Journal of Computing
Sciences in Colleges, 19(3):89–95, 2004.

3. E.W. Dijkstra. Letters to the editor: go to statement considered harmful. Com-
munications of the ACM, 11(3):147–148, 1968.

4. Y. Ding, Y. Xu, ZC Zhao, Y. Luo, and X. Gao. Climate change scenarios over
east asia and china in the future 100 years. Climate Change Newsletter, pages 2–4,
2004.

5. L. Erlikh. Leveraging legacy system dollars for e-business. IT Professional, 2(3):17–
23, 2000.

6. R.K. Fjeldstad and W.T. Hamlen. Application program maintenance study: Re-
port to our respondents. Proceedings Guide, 48, 1983.

7. N.E. Gold. The meaning of legacy systems. Univ. of Durham, Dept. of Computer
Science, 1998.

8. H. Gordon, S. O’Farrell, M. Collier, M. Dix, L. Rotstayn, E. Kowalczyk, T. Hirst,
and I. Watterson. The CSIRO Mk3. 5 Climate Model. Centre for Australian
Weather and Climate Research, 2010.

9. D.E. Knuth. An empirical study of fortran programs. Software: Practice and
Experience, 1(2):105–133, 1971.

10. Cohen Malcom. Fortran: A Few Historical Details. http://www.nag.co.uk/nag
ware/NP/doc/fhistory.asp, October 2004.

11. O. Marti, P. Braconnot, J. Bellier, R. Benshila, S. Bony, P. Brockmann, P. Cadule,
A. Caubel, S. Denvil, JL Dufresne, et al. The new ipsl climate system model:
Ipsl-cm4. 2005.

12. M. Méndez, J. Overbey, A. Garrido, F.G. Tinetti, and R. Johnson. A catalog and
classification of fortran refactorings. In 11th Argentine Symposium on Software
Engineering (ASSE 2010), pages 500–505, 2010.

13. M. Metcalf. The seven ages of fortran. Journal of Computer Science and Technol-
ogy, 11(1):1–8, 2011.

14. E. Roeckner and Max-Planck-Institut für Meteorologie. The atmospheric general
circulation model echam5: Part 1: Model description, 2003.

CACIC 2012 - Anales del XVIII Congreso Argentino de Ciencias de la Computación 855



15. G.L. Russell, J.R. Miller, and D. Rind. A coupled atmosphere-ocean model for
transient climate change studies. Atmosphere-ocean, 33(4):683–730, 1995.

16. G.A. Schmidt, R. Ruedy, J.E. Hansen, I. Aleinov, N. Bell, M. Bauer, S. Bauer,
B. Cairns, V. Canuto, Y. Cheng, et al. Present-day atmospheric simulations us-
ing giss modele: Comparison to in situ, satellite, and reanalysis data. Journal of
Climate, 19(2):153–192, 2006.

17. I. Sommerville. Software engineering. Addison-Wesley New York, 2000.
18. K.E. Taylor, R.J. Stouffer, and G.A. Meehl. An overview of cmip5 and the exper-

iment design. Bulletin of the American Meteorological Society, 93(4):485, 2012.
19. F.G. Tinetti and M. Méndez. Fortran legacy software: source code update and

possible parallelisation issues. In ACM SIGPLAN Fortran Forum, volume 31,
pages 5–22. ACM, 2012.

20. M.V. Zelkowitz, A.C. Shaw, and J.D. Gannon. Principles of software engineering
and design. Prentice Hall Professional Technical Reference, 1979.

21. Photran, an Integrated Development Environment and Refactoring Tool for For-
tran. http://www.eclipse.org/photran/.

22. Count lines of code: Cloc. http://cloc.sourceforge.net/.

CACIC 2012 - Anales del XVIII Congreso Argentino de Ciencias de la Computación 856




