
Climate Models: A Software Engineering

Approach

Fernando G. Tinetti∗, Mariano Méndez

Technical Report LS-01-2014
July 2014

III-LIDI, Facultad de Informática, UNLP
50 y 120, 1900, La Plata

Argentina

Abstract

Climate Simulation and Weather Forecasting are amongst the most
representative examples of scientific software, which has evolved through-
out the past sixty years. In this paper, a set of Global Climate Mod-
els (GCM) have been analysed from a Software Engineering perspective,
analysing the composition of their internal structure and programming
constructs which have been used in the building process. We have imple-
mented a set of software metrics such as Cyclomatic Complexity, Lines of
Code, Number of Fortran Obsolete Language Features, among others.We
have followed a compiler like approach, collecting information based on
traversing the Abstract Syntax Tree (AST). The obtained data can be
used for different purposes at different stages of the software life cycle
such as: maintenance tasks, parallelization, and optimization. The re-
sults suggest that some programming techniques used for building sci-
entific software have fallen into disuse because they are now considered
obsolete and error-prone. In addition, GCM’s internal structure seems
to evolve at a slower pace than programming techniques. The analysis
methodology can be used to update and enhance the scientific software
in order to make simpler other tasks such as optimization and paralleliza-
tion for specific new hardware such as multi/many-core processors and
co-processors, distributed memory parallel hardware, etc.

1 Introduction

In the early beginnings of Computer Science, the production of software was lim-
ited to scientific software. Some of the most preponderant examples of such soft-
ware are Weather Forecasting and Climate Simulations. The first program which
produced weather forecast prediction run on a computer in 1950 [21, 69, 41],
and area of scientific computing, or rather, the area of numerical processing, has

∗also at Comisión de Investigaciones Cient́ıficas de la Prov. de Bs. As.

1

been producing software for many decades. These programs are models which
describe complex phenomena from reality based on a series of mathematical
equations which are solved by an algorithm which is executed as a computer
code [53]. The year 1954 saw the birth of the most long-lived programming
language [49], and by far the most used in scientific software production and
High Performance Computing (HPC): Fortran [12, 55, 52, 7].

Some research conducted recently has stressed an apparent divergence be-
tween the techniques and methods adopted in commercial software production
and those used for producing scientific software [70, 36, 57, 8, 12, 58, 13]. We
have measured some source code characteristics to determine how many changes
on source code should be applied as well as which kind of program transforma-
tions should be. Also, those measurements should be useful to obtain further
information that would help us to quantify the changes needed. We have focused
our analysis on a set of scientific applications in the field of climatology. We
have worked on Global Climate Models (GCM) by performing a detailed source
code measurements, and “Our purpose has been purely scientific in an attempt
to find how things are, without moralizing or judging people’s competence” [38]
or their work.

If we determine that the software we are working with needs be to mod-
ernized or parallelized, we should, as an initial step, break through from the
“Unknown” to a “Manageable” process/project. There are some issues that
generally affect Fortran source code, particularly in legacy Fortran [66] program,
e.g. software seems to have been built with old design styles, documentation is
rarely found, different programming styles are found in source code lines, and
the wide usage of Fortran Common Blocks for sharing memory among subrou-
tines. We are working on legacy scientific Fortran source code from many points
of view, including source code transformation/s for HPC [67], and also gather-
ing information from researchers, Fortran software developers, Fortran standard
meeting group members, etc. as indicated in the poll at [73].

Fortran has faced a particular evolution throughout its own life; during the
last decades the Fortran standard has been revised several times (1978, 1991,
1997, 2004, 2010) [49]. Modernizing and updating old Fortran source code has
become an important objective because a large set of programs written over
more than forty years are still operational these days. Scientific software can be
considered as a good case study.

A major common problem that scientists are faced with is the need for better
performance. One reliable option for such aim is to take advantage of parallel
processing by using shared memory parallel hardware. Even though multi-core
processors are widely spread, even in small scale computers, their facilities are
not fully exploited. When it comes to taking advantage of shared memory
parallel processing a good starting point is using libraries or facilities like those
provided by threading. However, if we venture into the parallelization task,
we will find some obstacles closely related to the aforementioned modernization
issues. Nevertheless, there are Fortran programs which present a large set of
old language features such as: fixed format without any indentation, obsolete
language features still in use, deleted language features which are allowed by
compilers, and so forth. These features make the parallelization process a very
arduous and error prone task.

This study performs a thorough analysis on a set of scientific programs com-
monly known as Climate Models in order to find traces of differences between

2

scientific and commercial software reflected in the source code. Once found, we
should determine the way in which the Fortran language is used to build this
kind of software. In addition, we should also determine whether or not a specific
set of source code transformations should be applied to the source code in order
to help it evolve, modernize, optimize, parallelize, etc.

This paper is structured as follows. The next section makes a historical
review about forecasting and climate models including those climate models
selected to be analysed. In section 3 we describe current problems found in
scientific software from a software engineering point of view. In Section 4 the
methodology adopted to perform our research is thoroughly described. Results
are presented in Section 5. Section 6 is devoted to the discussion and further
comments about the results presented in section 5. A brief literature review is
made in Section 7. Finally, Section 8 presents conclusions and further work.

2 Climate Models and Weather Forecast: An
Historical Review

The birth of modern meteorology and weather forecasting can be traced back
to the beginning of the 20th century [21, 69, 41]. In 1904, Vilhem Bjerknes
published an article in which he proposed a procedure and a set of equations
that allowed scientists to forecast weather. This set of seven independent equa-
tions described the behaviour of seven variables: temperature, pressure, density,
the three components of velocity, and humidity. Furthermore, he proposed a
two step process for obtaining a rational forecast: the diagnostic step and the
prognostic step. The solutions to Bjerknes equations required a large amount of
mathematical calculations to be performed; given the lack of automated tools
to achieve those calculations, the success of the proposed model was hindered.

In the early ’20s, the idea of dividing space into a grid composed by cells, each
one with its own value for different variables (temperature, pressure, density,
the three components of velocity and humidity) and the applying of the finite
difference method to solve differential equations, converged into the first “Nu-
merical Weather Prediction” authored by L. F. Richardson. While Richardson’s
techniques made use of a simplified set of Bjerkenes equations the computations
required to perform the calculations were still very time consuming. In order
to speed up the process, Richardson imagined what he named “the forecast fac-
tory” an avant-garde version of automated collaborative calculation process. It
would take a crowd of 64000 people, each of them equipped with a mechanical
calculator, to execute a small part of the whole calculation, an early vision of
crowd computing [21, 69].

After the World War II, John Von Neumann, who had been embarked on
computational simulations of nuclear weapon explosions, related these two non-
linear problems of fluid dynamics. In the early ’50s Von Neumann gathered a
group of climate scientists, thus founding the Meteorology Project. Von Neu-
mann promoted the development of weather modelling: he “hoped that weather
modelling might lead to weather control” [21]. This group of scientists lead by
Jule Charney, run the first automated regional weather forecast on a computer
in 1950; the model run on the Electronic Numerical Integrator And Computer
(ENIAC) [21, 69, 41].

3

This simulation split North America into a 270 cell points grid, each cell
point separated by 270 Km. The next step was building a model of the Earth’s
atmosphere. The first General Circulation Model was run on May 1955 by
Norman Phillips. This was a two level quasi-geotrophic model, it was the first
large-scale atmosphere simulation to run on a computer, the model used a grid of
272 cells [41], and it was ran on the Mathematical Analyzer, Numerical Integra-
tor, and Computer (MANIAC I). The next big step in this evolutionary process
was the addition of interactions between the atmosphere and other Earth com-
ponents such as the ocean. When a general circulation model is coupled with
an ocean model, an Ocean-Atmosphere General Circulation Model (OAGCM) is
obtained. The first attempt of OAGCM was presented by Manabe and Bryan in
1969. In 1975 they presented an improved model that obtained more accurate
results [43, 21]. From 1975 to 1985 more sophisticated techniques contributed
to the integration of the atmosphere with other climate factors such as ice sea,
land/vegetation, and carbon cycle among others.

Nowadays an OAGCM has evolved from a set of seven independent equations
into a complex structure of constituents of interacting components. Some of
these components are used modern climate models, such as:

• The Atmosphere Component, to model physical properties and the dy-
namics of the atmosphere.

• The Ocean Component, to model physical properties and the dynamics of
the ocean.

• The Land Component, to model physical properties and the dynamics of
the land surface.

• The Sea Ice Component, to model physical aspects of the Sea Ice such as
thermodynamical properties and the ice dynamics.

• The coupler, to transfer values of state variables (energy, heat, water)
between model components.

Thus, climate models have evolved into complex entities composed by a set
of equations as well as people, physical, and mathematical models, equations,
software tools, and hardware to name just a few. The combination of all of these
resources allows meteorologists to obtain, predict and validate the large-scale
atmosphere dynamics. The underlying idea in paper is that a complex program
such as a climate model should be adecuately constructed and maintained, and
cannot be left “as is” just because of its complexity. Furthermore, considering
a climate model (or any other numerical/processing program, actually) as “un-
touchable” implies lots of disadvantages from the point of view of performance
improvements relative to both current and new hardware facilities/platforms.
In the rest of the article we will use GCM to refer to both “General Climate
Models” and “Global Climates Models” which are considered “the most sophis-
ticated climate models” [54].

2.1 Climate Models and Climate Change

Driven by climate change, the WCRP (World Climate Research Program) Work-
ing Group on Coupled Modelling (WGCM), promoted a new set of coordinated

4

climate model experiments in the year 2008. These experiments have been per-
formed by 20 climate modeling groups from around the world and integrate the
fifth phase of the Coupled Model Intercomparison Project (CMIP5), which will
aid in [65]:

1. Determining the mechanisms behind model differences in not very well
understood feedbacks connected to the carbon cycle and clouds.

2. Evaluating climate predictability and examining the models’ ability to
predict climate on decadal time scales.

3. Determining the reasons why analogously forced models generate a given
range of responses.

All of the involved models are computing intensive since a climate simulation
for a period of one hundred years can be very time consuming even on large and
powerful modern supercomputers with thousands of processors [68].

The original aim of our research was to analyse the whole set of climate
models belonging to the participating groups of the CMIP5 experiments. We
requested the collaboration of each modelling group in order to obtain each
model’s source code. In response to our request, we received the climate models
specified in Table 1.

Modelling Group Model Institution
BCC BCC-CSM1.1 Beijing Climate Center, China Meteorological

Administration

CSIRO-QCCCE CSIRO-Mk3.6.0 Commonwealth Scientific and Industrial Research Org.
in collaboration with the Queensland Climate

Change Centre of Excellence
INM INM-CM4 Institute for Numerical Mathematics

IPSL IPSL Institut Pierre-Simon Laplace

MOHC HadGEM2
HadGEM3 Met Office Hadley Centre

MPI-M MPI-ESM-LR Max Planck Institute for Meteorology (MPI-M)

NASA GISS ModelE NASA Goddard Institute for Space Studies
GISS

NASA GMAO GEOS-5 NASA Global Modeling and Assimilation Office

NCAR CCSM3 National Center for Atmospheric Research
CCSM4

NOAA GFDL GFDL-CM2.1 Geophysical Fluid Dynamics Laboratory

NSF-DOE-NCAR CESM1 National Science Foundation, Department of Energy,
National Center for Atmospheric Research

CMCC-CESM CMCC-CESM Centro Euro-Mediterraneo per I Cambiamenti Climatici

COLA and NCEP CFSv2-2011 Center for Ocean-Land-Atmosphere Studies and
National Centers for Environmental Prediction

Table 1: Analysed Climate Models and Modelling Groups

5

3 Software Engineering and Scientific Comput-
ing

In its early years the scope of computing was limited to scientific computing, i.e.
“computing” was regarded as a synonym of “scientific computing” [35]. People
outside academic scientific areas did not have access to a real computer. In 1959
“Computer Science” was used for the first time [24] and in just a few decades
it has had wide and startling influence on human life. Since then, Computer
Science has evolved to include a vast number of subfields including Software
Engineering [59].

In comparison, the evolution of scientific computing seems to be taking place
at a much slower rate. Moreover, not only it does seem to be lagging behind,
but also it seems to have taken on a different direction altogether. Some au-
thors refer to this phenomenon a the “mismatch” or “chasm” between Software
Engineering and Scientific Computing [35, 8, 20]. The current software building
practices used by computational scientists often bear little resemblance to those
promoted by Software Engineers [8, 58, 12, 29, 20, 35]. A possible reason could
be that it is commonly found that the role of the end-user and programmer fall
upon the same person [58, 36, 8, 70, 12, 29, 35, 57]. Even when hardware and
computational power is growing at an accelerated rate, computational science
seems to be lagging behind [70, 20].

Among some of the alleged reasons for the aforementioned mismatch in soft-
ware development, we could start by highlighting the complexity of the do-
main [58, 57]. A second factor could be the low value scientists ascribe to
software developing knowledge and skills [8, 58, 12]. Third, lack of software
engineering training and the horizontal quality of teaching, where knowledge
is passed on from scientist to scientist both subject having the same level of
programming competence [70, 8]. Also, scientists are reticent to use and apply
modern programming tools such as integrated development environments (IDE)
[70, 8, 12, 13]. In spite of the existing mismatch between software engineering
and scientific compunting, the programs created by scientists are successful [56].

3.1 Scientific Computing and Fortran

One of the most widely used programming languages for developing scientific
and computing intensive software is Fortran [8, 36, 12, 13, 55]. We could start
by describing Fortran as a long-lived programming language given the fact that
it was born in 1954. The language reference book was first published in 1957
and it featured only 32 statements [6]. While many people may consider Fortran
as an obsolete, ancient, out-of-date, and irrelevant programming language to be
taught by the computing departments of a large number of universities [36],
it is in fact one of the most widely used programming languages in scientific
programming.

Fortran is considered to have passed through a “seven ages” evolutionary
process [49] evolving simultaneously with distinct programming paradigms such
as: Structured, Object Oriented, and Parallel Programming. It has been the
first high level programming language with its own standard [6] which has
evolved over the years:

• The revised and improved Fortran 66 [26] became Fortran 77 [4] in 1978.

6

• In 1992, a major revision of the standard, resulted in Fortran 90 [5].

• In 1997, a minor revision launched the Fortran 95 Standard [33].

• Likewise, Object-oriented features have been introduced in the Fortran
2003 Standard [34].

• Finally, the last Fortran Standard revision published as Fortran 2008 was
released in 2011 [44], for which there are only a few fully compliant com-
pilers.

A report on the compiler support for the newest Fortran standards (2003 and
2008) has been maintained up to date in the ACM SIGPLAN Fortran Forum,
e.g. [14]. On the other hand, even when obsolete features were deleted by the
standards committees in the different revisions, compatibility still remained:
“Unlike Fortran 90, Fortran 95 was not a superset; it deleted a small number of
so-called obsolescent features. However, the incompatibility is more theoretical
than real as all existing Fortran 95 compilers include the deleted features as
extensions” [42].

4 Specific Software Metrics and Methodology

Software metrics are in use since many years ago [16, 25, 48] for software analysis
and evaluation, and project budget/resource estimation. We have selected some
of the most useful ones and we have defined some specific ones for our purpose
of current climate model software analysis.

4.1 Metrics

We have collected a number of source code measurements as a way of character-
izing the current state of each program as well as the estimated effort involved
in modernization, optimization, parallelization, etc. We have roughly classified
source code measurements as follows:

• (S)LOC (Source Lines Of Code): LOC, Logical Executable LOC (LE-
LOC), Non Blank Non Comments LOC (NbNcLOC), per (whole) model,
file, module, and subprogram.

• File-related metrics: number of files, number of Fortran Functions and
Subroutines per file.

• Subprogram Cyclomatic Complexity [45] as detailed in [10].

• Modules related measurements: number of Use statements (identifying
those with and without “Only”), number of public and private subpro-
grams (identifying functions and subroutines), number of module data
declarations (module variables).

• Data related measurements: Common, Data and Block Data, and Equiv-
alence statements, dummy arguments usage (number of arguments per
subprogram, number of Intent In/Out/InOut arguments), number of lo-
cal data and array declarations.

7

• Fortran Include and Preprocessor lines: number of Fortran Include lines,
number of preprocessor lines (directives, conditional directives/constructs,
macros, pragmas, errors), and specifically number of OpenMP directives.

• Loop related measurements: number of Do constructs, number of Do
nested levels (1-10), number of new style Do loops (Do... End Do for-
mat), number of old style Do loops (labeled, no End Do).

• Go To and Deleted and Obsolescent Fortran Features: number shared Do
loops, and number of Go To, arithmetic If, assigned Go To, computed Go
To, Entry, Pause, and statement Function statements.

• Input Output operations: Number of Print, Read, Rewind, and Write
statements.

• Other Fortran statements/features usage, such as the number of labels,
Implicit, External, Format, and Call statements, If constructs and state-
ments, etc.

Some of the above metrics are related to size and complexity of the soft-
ware/climate models, e.g. lines of code (LOC, LELOC, etc.), number of files, cy-
clomatic complexity, and number of subprograms (Functions and Subroutines).
All of these metrics help in having a reference or budget/resources estimation
required for software modification, updating, optimization, etc. We can also re-
late some metrics to modularization and structured programming (or lack of),
such as those about subprograms, modules, Go To and Fortran obsolescent and
deleted features. Also, we focused rather specifically on metrics that we can use
or relate to parallelization and HPC, such as those related to data declaration
and processing (subprogram arguments, loops, global/static data in Fortran
Common blocks).

4.2 Methodology

A priori, all of the metrics mentioned in the previuos section may seem too
many to analyze each one of them in detail. However, we have found that
the methodology we have used is conceptually and practically simple enough
not only to have all of them at hand to be analyzed, but also to have other
metrics as required by specific analysis/study. Our approach for collecting the
metrics has been based on Abstract Syntax Trees (AST) compiler like source
code analysis. In an AST, each node of the tree represents a programming
construct occurring in the source code, and “the children of the node represent
the meaningful components of the construct” [2].

We have extended Photran, an Eclipse plug-in specifically designed for For-
tran [71]. Our extension has been focused on building a set of source code anal-
yses performed by developing the visitor design pattern [27] (on Java) through
the implementation of a set of (Java) classes to perform the required analysis
on the AST structure. The specific steps followed to perform the measurements
are listed below:

1. Source Code Obtaining: we have selected the climate models listed in
the CMIP 5 web page [72]. We have downloaded the models with source
code freely available on the internet. When the model source code was not

8

available for downloading, an email was sent to the owner group requesting
their collaboration. This stage took more than a year, and as a result, we
have collected the set of climate models shown in Table 1 above.

2. Metrics Gathering Process: The information regarding each file, module,
and routine has been obtained by traversing the AST structure and col-
lecting the above listed data about each Fortran measured item (see Figure
1). While the AST is constructed by Photran, several specific visitors have

Figure 1: Measurement Process from Source Code To Metric Data

been implemented for computing metrics. Every visitor is independent of
each other, and most of them are simple enough so that we were able to
develop the complete set in less than two weeks.

3. Source Code Metrics Export/Storage: The output of the measurement
process is stored in files. Some files are directly selected by the user to
be examined from within the IDE (e.g. in CSV or HTML format). This
enables the user to access data in a human readable format.

4. Source Code Metrics Import to DBMS: In order to obtain an efficient
data analysis procedure and fast information recovery, an open source
SQL DBMS has been used. Data stored in CSV files have been imported
into the DBMS.

Even when the previous four steps have been carried out for a specific set of
programs (climate models), involving source code in a single language (Fortran),
and in a specific IDE (Photran), it is possible to follow the same steps in almost
any other HPC application field.

5 Results

The methodology described in the previous section has allows to collect a vast
amount of data. We will show only a set of well known metrics in order to
describe the most interesting characteristics of HPC code and climate models
in current production environments. Other information not included in this
section is readily available upon request.

9

5.1 Size and Complexity Related Results

As a first step we have quantified the size of each model by counting the lines
of code analysed: LOC, NbNcloc, and LELOC per model, and the results are
shown in Table 2, which is ordered by LOC. In total, we have analysed about
7.3M LOC, composed by about 4.2M NbNcLOC, including about 2.6M LELOC.
Also, Table 3 shows the models ordered by the number of subprograms, detailing

Model LOC LELOC NbNcLOC
GISS 39950 14950 19631

CSIRO-Mk3.6.0 86494 35025 53340
INM-CM4 91337 47098 73946

GFDL-CM2.1 288153 94029 146218
CCSM3 361107 102584 186143
GEOS-5 367483 144598 211793

IPSL 374766 115554 180997
ModelE 379860 165866 278563

CMCC-CESM 380339 149811 217661
BCC-CSM1.1 451464 152236 235552
MPI-ESM-LR 477682 185426 283041
CFSv2-2011 478450 209139 297080
HadGEM2 633713 187547 343568
HadGEM3 737326 240533 439393

CCSM4 821726 262358 415608
CESM1 1370578 481871 803022

total 7340428 2588625 4185556

Table 2: Lines of Source Code per Climate Model: LOC, LELOC, NbNcLOC

functions (and how many of them are defined in module/s), and subroutines
(and how many of them are defined in module/s). Thus, we have analyzed
a total of about 51.2K Fortran subprograms, where approximately 42.5K are
subroutines and 8.7K are functions. Even when data in Table 2 and Table 3
are shown here mostly for a raw idea of models size, they can be used for a
more detailed and thorough analysis. Taking into account the different places
for models HadGEM2 and HadGEM3 in both Tables (2 and 3 respectively), it is
possible to conclude that they have larger subprograms than the other models,
i.e. more LOC per subprogram, in average. Also, Table 3 shows a different
usage of the very useful Fortran 90/95 capability: modules. Some models have
extensively taken advantage of modules, such as GFDL-CM2.1, CCSM4, and
CESM1, while others have only a little fraction of subprograms in modules
or do not use modules at all, such as GISS, CSIRO-Mk3.6.0, INM-CM4, and
HadGEM2.

In Table 4, the subprograms of each model have been distributed in a set
of four classes according to their cyclomatic complexity (CC) (“the number of
paths through a program” [45]), where the thresholds are defined as in [11].
Even though CC analysis/characterization has its detractors [62, 61], some re-
searchers claim that the higher the level of CC of a procedure, the higher the
probability of finding bugs or faults in it [15]. Moreover, each range of CC
has been characterized with a corresponding routine risk [1] as shown in Table

10

Model Subpr. Func. In Mod. Subr. In Mod.
GISS 143 18 0 125 0
CSIRO-Mk3.6.0 299 3 0 296 0
INM-CM4 739 42 0 697 45
GFDL-CM2.1 2012 331 329 1681 1670
HadGEM2 2032 89 14 1943 319
HadGEM3 2566 222 184 2344 1219
CCSM3 2740 327 320 2414 1950
CMCC-CESM 2822 524 451 2298 1360
GEOS-5 3171 721 487 2450 1645
IPSL 3361 441 413 2920 2222
MPI-ESM-LR 3410 453 393 2957 2198
CFSv2-2011 3774 1113 818 2661 1248
BCC-CSM1.1 3784 802 781 2982 2090
ModelE 3944 619 474 3325 1697
CCSM4 6424 1150 1117 5274 4649
CESM1 9832 1852 1809 7980 7516
total 51053 8707 7590 42534 29828

Table 3: Number of Subprograms per Model

5. Taking into account Table ccRangeT and Table 5, each model has a large
number of subprograms with a high risk, and many subprograms considered
as “untestable”. Even when we do not necessarilly accept the characterization
given in Table 5 (which would lead to claim that every model has untestable
code), we think that at least higher CC implies higher risk and, for example,
stronger readability trouble.

5.2 Subprograms’s Metrics

Given the importance of per-subprogram work for maintenance in general and
for optimization and parallelization in particular, we have collected several mea-
surements of each models’ subprograms, some of them are shown in this sub-
section. Each model is ordered in Table 6 according to its maximum LOC
subroutine (including the subroutine name) as well as the average subroutine’s
LOC per model.

The number of parameters (Fortran arguments) a subprogram should have
depends on many different factors. One of them is the programming language,
whether it has been designed for managing complex data types or not. Also, the
number of parameters is related to other classical sofware engineering character-
ization of software and subprograms in particular, such as the degree of coupling
and/or cohesion of a program (intuitively, a greater the number of parameters
corresponds to a greater degree of coupling and/or cohesion). Several standard
tasks on HPC software in particular are also strongly related to the number
of parameters: more parameters usually imply more data to process or related
to processing, which also impacts optimization and parallelization tasks. Table
7 shows the models ordered by the maximum number of parameters (Fortran
arguments) for a single subprogram. The average number of subprograms argu-

11

Model 0-10 11-20 21-50 > 51
GISS 62 26 34 21
CSIRO-Mk3.6.0 116 63 65 55
INM-CM4 459 135 93 52
GFDL-CM2.1 1442 249 212 109
HadGEM2 1003 361 383 285
HadGEM3 1318 421 453 274
CCSM3 2053 335 289 63
CMCC-CESM 1806 438 381 197
GEOS-5 2301 427 308 135
IPSL 2573 375 284 129
MPI-ESM-LR 2191 531 454 234
CFSv2-2011 2397 511 603 263
BCC-CSM1.1 2705 527 422 130
ModelE 3026 459 312 147
CCSM4 4682 803 701 238
CESM1 7312 1223 947 350

Table 4: Procedures with Cyclomatic Complexity in a Given Range (per Model)

Cyclomatic Complexity Risk Evaluation
1-10 A simple module without much risk
11-20 A more complex module with moderate risk
21-50 A complex module of high risk
51 and greater An untestable program of very high risk

Table 5: Cyclomatic Complexity Range Description

ments is also included in Table 7 for each model. While not invariant, models
with higher maximum number of arguments for a single subprogram usually
have higher average number of arguments.

Whereas there is no formal limit on the number of parameters that a pro-
cedure must have, the higher amount of parameters that a procedure has, the
higher the understanding analysis that needs to be carried out. Different studies
suggest that human beings cannot process a vast amount of information at the
same time; moreover, studies claim that a human being cannot handle more
that seven plus minus two “chunks of information” at the same time [51], or
even a lower number [17]. Going in this direction there is a recommendation
to maintain the number of subprograms parameters bound by 7 [46]. Table 8
shows the models ordered by the % of subprograms with 0-10 Fortran argu-
ments. Taking into account the above, most of the subprograms are in a “safe”
range of parameters number(7±2), but there is an important number of subpro-
grams which have their number of parameters between 11-20 and 21-50. Also,
there is a small (but nonetheless important) set of subprograms exceeding 51
parameters.

12

Model (Subroutine Name) max LOC avg LOC
GISS (SURFCE) 1333 156
CSIRO-Mk3.6.0 (TRACER) 1667 243
INM-CM4 (SEAICE MODULE SPLIT) 2018 128
CCSM3 (radcswmx) 2406 99
BCC-CSM1.1 (radcswmx) 2448 88
GEOS-5 (diaglist) 2602 81
ModelE (init ijts diag1) 2975 83
CFSv2-2011 (INITPOST GFS) 3267 108
CMCC-CESM (DGESVD) 3409 123
MPI-ESM-LR (datasub) 3504 123
IPSL (physiq) 3848 75
HadGEM2 (GLUE CONV) 4161 275
CCSM4 (hist initFlds) 4623 99
GFDL-CM2.1 (morrison gettelman microp) 5124 108
HadGEM3 (conv diag) 5602 261
CESM1 (lw kgb03) 11975 115

Table 6: Models Maximum and Average LOC per Subprogram

5.3 Go To and Deleted and Obsolescent Fortran Features

One remarkable feature of the Fortran evolution lies in the fact that each new
version is backward compatible with all the previous standard versions [49].
Furthermore, since the Fortran 90 standard revision, some features of the lan-
guage have been marked as obsolescent and some of them have been deleted,
but most compilers maintain them as valid (aka Fortran extensions). We have
included Go To usage in some way related to deleted and obsolescent features
(even when no one Fortran standard does so) because in several models Go To
tends to produce spaghetti. While following the Fortran Standards Committees
(i.e. the actual standards) Go To cannot be considered obsolescent, we do con-
sider spaghetti code as obsolescent. There are opposing views about the Go To
statement usage since long time ago: some pro-Go To-usage lead by [39] and
the against-Go To-usage led by [19]. As always, we have to acknowledge that
Go To usage does not generates spaghetti code by itself, but easily allows to
produce such source code.

In Table 9 we have gathered the information concerning the number of oc-
currences and uses of deleted and obsolescent features (which appear in the
appendix B of the Fortran standard [44]), in each models’ source code. The
first interesting result is the fact that all models make use of one of these fea-
tures at least once. Another interesting result shown in Table 9 is that 10 out of
16 models make use of the Arithmetic If statement. Finally, two deleted features
appearing in the appendix B of the Fortran 2008 standard and in the Fortran 90
standard, namely Pause and Assigned Go To statements, are still found in the
source code of 6 models. Furthermore, we have found two models containing
both deleted features. Models in Table 9 are ordered by the total number of ob-
solescent and deleted Fortran features, and Table 10 shows the models ordered
by the number of Go To statements. A further and more complicated analysis
about Go To, and deleted and obsolescent Fortran features remains, basically

13

Model Subprogram Max. Args. # Avg. Args. #
GISS KPPMIX and MSTCN2 21 3
INM-CM4 TRAN ICE MPDATA 35 4
ModelE Lagrangian to Eulerian 52 4
CSIRO-Mk3.6.0 c aero1 63 7
CMCC-CESM IGSCINT 64 5
CCSM3 slttraj 68 4
GFDL-CM2.1 moist processes 80 6
IPSL cv3a compress 95 5
CCSM4 seq infodata PutData 104 4
CESM1 seq infodata GetData 117 4
CFSv2-2011 RCtoNamSfcNamelist 117 6
GEOS-5 CATCHMENT 163 5
MPI-ESM-LR update surface 166 5
BCC-CSM1.1 CAM V5 183 5
HadGEM2 Eot diag 333 19
HadGEM3 Eot diag 378 16

Table 7: Maximum and Average Number of Arguments per Procedure per Model

related to how dangerous are those statements on the source code. Even when
dangerousness is hard to measure (such as the so called bad smell is), having
a deleted or obsolescent feature in a routine which is not used in most of the
program executions is not the same as having those statements in a routine used
50% of every run.

5.4 Common Blocks and Equivalence

Fortran common blocks are “blocks of physical storage ... that may be accessed
by any of the scoping units in an executable program” [5]. This language feature
has been defined and used since Fortran 77 due to the fact that Fortran 77 does
not have global variables, among other reasons. There are some factors that
discourage the usage of common blocks:

• For a common block to be available, it must be declared every time it
is used in every routine that makes use of it. This drives people to use
common blocks via an INCLUDE statement or a #include C preprocessor
line. Thus, the common block is replicated on in each subroutine where
it is used, even when not every variable defined in the common block is
actually needed in the subroutine.

• In a common block, the variables do not need to have the same names in
each place in which they occur, as shown in the example below:

14

Model 0-10 (%) 11-20 21-50 51 -100 101 -200 > 200
HadGEM2 1132 (56) 406 320 109 60 5
HadGEM3 1648 (64) 366 367 124 52 9
CSIRO-Mk3.6.0 234 (78) 35 27 3 0 0
GFDL-CM2.1 1717 (85) 217 70 8 0 0
CMCC-CESM 2431 (86) 289 96 6 0 0
MPI-ESM-LR 2959 (87) 309 131 9 2 0
CFSv2-2011 3340 (89) 340 81 10 3 0
GEOS-5 2807 (89) 277 86 0 1 0
INM-CM4 663 (90) 67 9 0 0 0
IPSL 3021 (90) 224 99 17 0 0
BCC-CSM1.1 3410 (90) 231 127 12 4 0
CCSM4 5962 (92) 325 129 6 2 0
CCSM3 2527 (92) 136 74 3 0 0
CESM1 9145 (93) 479 183 22 3 0
ModelE 3693 (94) 204 46 1 0 0
GISS 139 (97) 2 2 0 0 0

Table 8: Number of Subprograms per Model in a Given Range of Fortran Ar-
guments Number

Subroutine Sub1

Common /C1/ A, I, B

A = A + B

I = I + A

Print *, A, I, B

End

Subroutine Sub2

Common /C1/ C, J, G

C = C + G

J = J + C

Print *, C, J, G

End

and variable aliasing problems are implicit as well as those corresponding
to data representation.

• Combined with implicit data declaration and the usage of the EQUIVA-
LENCE statement, the common blocks could be very complex to analyse
and understand.

Table 11 shows Fortran common blocks and the number of Equivalence state-
ments found in each model ordered by the number of common blocks declared
per model. Most of the models declare common blocks in files later included in
several subroutines/functions, so it is possible that a single block is used several
times, including cases where not all of the variables declared in the common
block are actually used.

5.5 Loops

There is a general rule which indicates that 80% of the time is spent in 20% of
the source code, and even referred to as the 90/10 Locality Rule [30]. Taking
this into consideration, restructuring or improving 20% of the source code could

15

Model Arith. If Assig. Go To Comp. Go To Entry Pause Total

HadGEM3 0 0 0 0 1 1
CCSM3 0 0 1 0 0 1
GFDL-CM2.1 1 0 1 0 0 2
HadGEM2 0 0 0 0 2 2
IPSL 0 0 0 0 2 2
BCC-CSM1.1 0 0 3 0 0 3
CCSM4 1 0 10 8 1 20
CMCC-CESM 4 0 11 5 1 21
MPI-ESM-LR 3 4 9 4 1 21
CSIRO-Mk3.6.0 13 0 0 16 0 29
CESM1 16 6 9 8 1 40
INM-CM4 35 1 4 0 0 40
GEOS-5 37 0 22 13 0 72
GISS 33 0 6 36 0 75
CFSv2-2011 31 0 24 94 0 149
ModelE 23 0 4 139 0 166

Table 9: Fortran Obsolete Features Found within Each Model

provide a speed up that justifies applying changes to the source code. Conse-
quently, a key problem is how to identify those areas to be improved. Even
though Do loop statements are the best candidates to apply optimizations to,
they must be located and analysed first, and then transformed. Fortran 90
introduced the End Do statement in order to structure the finalization of the
Do loop statement. The End Do statement has been available to be used since
Fortran 90, but we have found very frequently the usage of the old style Do
loop statements -that ending in a label- as shown in Table 12. Furthermore, we
have found shared Do loop termination, which has been identified as an obsolete
Fortran language feature since the Fortran 90 Standard [5]. Models in Table
12 are ordered by the proportion of New/Old Do loops usage, and we have in-
cluded the number of shared Do loop termination in order to have an idea of
potential problems. Even in those models with a good proportion of new style
Do loops (e.g. more than 80%), there are old style Do loops with shared Do
loop termination.

5.6 User Defined Types

Large programs have a high level of complexity, which becomes a problem tak-
ing into account level of complexity that any person can deal with at any one
time: “The amount of complexity that the human mind is able to cope with
at any instant in time is considerably less than that embodied in much of the
software one might build”, [18]. Data abstraction is proposed and used as a
mechanism to reduce the levels of complexity, allowing humans to focus on the
key problem [28]. Thus, abstraction helps to reduce software complexity and
as a consequence it improves the process of software understanding. In other
words, “An abstraction is a simplified description of a system that emphasizes
the system’s important characteristics and ignores those details immaterial to
an understanding of the system at a given level” [32]. This concept has been

16

Model Go To

IPSL 150
CCSM3 176
GFDL-CM2.1 183
CMCC-CESM 189
CSIRO-Mk3.6.0 240
HadGEM3 264
GEOS-5 325
BCC-CSM1.1 370
HadGEM2 474
INM-CM4 490
CCSM4 589
CESM1 806
MPI-ESM-LR 897
ModelE 1170
GISS 1173
CFSv2-2011 3078

Table 10: Number of Go To Statements per Model

applied by software engineers at least through the last three decades. We have
counted the user-defined data types found in the models as one of the possi-
ble measures of the abstraction concept. Consequently, we have counted each
occurrence of the “Type” statement on each model.

In Table 13 the amount of (Fortran derived) type definitions per model is
shown. Surprisingly, two models do not have any user-defined data type, which
indicates that they perform the entire simulation using only Fortran native data
types. Even when the raw numbers in Table 13 are rather impressive, a further
analysis can be made taking into account NbNcLOC. In the case of CSIRO-
Mk3.6.0, for example, more than 19000 NbNcLOC are involved without a single
user defines type. As another example, the model CESM1 only 458 user defined
types are involved in more than 803000 NbNcLOC. In general, the number of
LOC of each model indicate that there should be much more user defined types
than those actually used.

5.7 Argument Intent

Fortran routine Argument Intent has been available in Fortran since 1992.
Claiming that the use of intent specification attribute purpose is just adding
documentation to the intended use of the dummy arguments would be an under-
statement. This point was covered in Note 5.14 from the Fortran 2003 standard
[5]:

... “Argument intent specifications serve several purposes in ad-
dition to documenting the intended use of dummy arguments. A
processor can check whether an INTENT (IN) dummy argument is
used in a way that could redefine it. A slightly more sophisticated
processor could check to see whether an INTENT (OUT) dummy
argument could possibly be referenced before it is defined. If the

17

Model Common Equivalence
CCSM3 0 4
GFDL-CM2.1 0 1
CMCC-CESM 0 0
HadGEM3 1 0
IPSL 1 0
GEOS-5 10 30
HadGEM2 44 5
MPI-ESM-LR 44 1
ModelE 84 15
CCSM4 91 4
CESM1 93 14
BCC-CSM1.1 147 36
GISS 155 2
CFSv2-2011 221 184
CSIRO-Mk3.6.0 330 51
INM-CM4 1114 5

Table 11: Common Block and Equivalence Usage

procedur’s interface is explicit, the processor can also verify that
actual arguments corresponding to INTENT (OUT) or INTENT
(INOUT) dummy arguments are definable. A more sophisticated
processor could use this information to optimize the translation of
the referencing scoping unit by taking advantage of the fact that ac-
tual arguments corresponding to INTENT (IN) dummy arguments
will not be changed and that any prior value of an actual argument
corresponding to an INTENT (OUT) dummy argument will not be
referenced and could thus be discarded”...

Table 14 shows that the usage of the intent specification attribute is not
utilized to its full potential. Evidence shows that the many models which use
the intent attribute specification do not make an intensive use of such language
attribute (e.g. in less than 50% of the arguments), and other models do not
make any use of these features at all. Rather surprinsingly, models with a large
number of subprogram arguments such as HadGEM2 have used attributes for
less than 50% of them. Summarizing the data in Table 14, models have used
attributes on arguments in a range from 0% to (GISS and INM-CM4) to 97%
(GFDL-CM2.1) of the routines arguments, and only 6 of 16 have used attributes
on more than 70% of the arguments.

5.8 Preprocessing Directives

The C preprocessor is the macro preprocessor for the C language [37], also known
as cpp. It was initially developed to be used by the C compiler. Nowadays
its use has been broadly extended to other programming languages, including
Fortran. The C preprocessor’s objective is to be a “textual preprocessor” [23].
Preprocessing is carried out before the compilation stage by replacing some
chunks of text with others in the program source code. The C preprocessor has

18

Model Num. Do % New % Old Shared
HadGEM3 30240 100 0 0
CCSM3 7613 99 1 2
HadGEM2 23251 98 2 60
GFDL-CM2.1 6367 98 2 6
CESM1 23316 97 3 14
CCSM4 16981 97 3 16
BCC-CSM1.1 11289 95 5 125
GEOS-5 7287 86 14 127
ModelE 13371 82 18 956
IPSL 11505 80 19 206
MPI-ESM-LR 11502 78 21 75
INM-CM4 5269 72 23 278
CFSv2-2011 14556 75 24 312
CMCC-CESM 9614 72 27 69
CSIRO-Mk3.6.0 4583 40 60 1375
GISS 1325 2 98 388

Table 12: Do Statement Usage

been used by programmers to integrate configuration management and program
portability [64, 23]. We believe that there are two important aspects to study the
preprocessor directives usage in Fortran. The first aspect is the fact that using
the preprocessor increases the program’s complexity and hence the work needed
to understand it [22, 3, 31]. The second important aspect is the underlying
complexity of restructuring programs in the presence of preprocessor directives,
which still remains a challenge.

Table 15 shows the number of preprocessing directives per model. We also
analysed the number of Fortran Include statements used, wich are shown in
the column labeled “Fortran Inc.” in Table 15. Fortran Include statements are
not C preprocessor directives, but we consider them as preprocessing directives
since the semantic is the same as that of a #include C preprocessor directive.
Some of the results shown are rather expected, such as having a low number
of preprocessing directives in the models with less LOC, e.g. GISS, INM-CM4,
and CSIRO-Mk3.6.0. Also, only four models have a relatively high Fortran
Include statements: INM-CM4, CSIRO-Mk3.6.0, IPSL, and HadGEM2 have a
number of Fortran Include statements which is at least a quarter of the total
number of preprocessing directives. Conditional directives (#ifdef, #ifndef,
#if, #else, #elif, #endif) constitute the largest fraction of the total number
of preprocessing directives in almost all models. Other preprocessor directives
such as #error and #line are not found in any model.

The uses of the preprocessor directives could be considered at least non
standard, though widely used. In some cases we found extremely non orthodox
usage, such as

subroutine1 (parameter1,parameter2

#include additionalParameters

)

19

Model Type Def.
GISS 0
CSIRO-Mk3.6.0 0
HadGEM2 26
CMCC-CESM 46
HadGEM3 62
CFSv2-2011 97
IPSL 100
ModelE 106
GFDL-CM2.1 129
GEOS-5 164
MPI-ESM-LR 165
CCSM3 169
BCC-CSM1.1 228
CCSM4 341
CESM1 458

Table 13: Type statement usage

Model Arguments Intent In Intent Out Intent InOut
GISS 380 0 0 0
INM-CM4 1748 0 0 0
CSIRO-Mk3.6.0 2209 19 7 0
IPSL 8988 1679 677 287
HadGEM3 9829 4353 718 1045
CMCC-CESM 10068 3984 611 654
GFDL-CM2.1 11390 7756 1923 1339
CCSM3 11708 6971 1825 845
GEOS-5 12712 6306 2617 1156
ModelE 14508 6640 1263 1186
MPI-ESM-LR 18167 7131 1600 1186
BCC-CSM1.1 19650 10747 2405 1361
CFSv2-2011 22661 8111 1676 860
CCSM4 28230 16499 4269 3038
HadGEM2 38353 8368 1614 1953
CESM1 41744 24663 6653 5200

Table 14: Arguments Intent Specification Usage

20

Model Total Conditional Fortran Inc. Prep. Include
GISS 0 0 0 0
INM-CM4 18 2 16 0
CSIRO-Mk3.6.0 37 6 31 0
GEOS-5 1795 1446 184 165
CFSv2-2011 1827 1243 65 519
GFDL-CM2.1 2056 1834 138 84
ModelE 3316 3202 75 39
CMCC-CESM 3616 3350 139 127
IPSL 5121 3346 1315 460
MPI-ESM-LR 5550 5223 145 132
CCSM3 5671 4166 207 1298
HadGEM3 6390 4575 927 888
BCC-CSM1.1 8375 6093 474 1808
CCSM4 10283 9466 465 352
HadGEM2 12893 5852 3501 3540
CESM1 13300 12563 430 307

Table 15: Preprocessing Directives per Model

which can be considered as highly error prone and unreadable. Also, new and
current Fortran standard features can be used, such as argument association by
argument keyword and optional dummy arguments.

6 Discussion

Some data gathered in this research seems to validate interesting results ob-
tained in previous works about scientific software and also show some new and
specific results on GCM. The first one seems to be the slow pace at which
Fortran source code and Fortran features usage evolve. While some language
features have been marked as obsolete in the Fortran standard more than 20
years ago [5] they are still being used. This may reinforce the idea that pro-
gramming skills and knowledge are passed on from scientist to scientist [70, 8].
One aspect to emphasize is the usage of Go To statement on every model, a
thorough study should be performed in order to characterize this Go To state-
ment usage. Another reason to avoid modernizing Fortran code is based on “If
it ain’t broke, don’t fix it” rule. However, even if not broken, unreadable and
hard to change (among other characteristics of legacy) software is rarely ready
to take advantage of lots of new facilities and computing power of new hard-
ware. Furthermore, the highly parallel new hardware (e.g. multi-many core
processors) requires a specific bias in software development and maintenance
towards parallel computing [63].

A second interesting point is highlighted by the values obtained for some
programming characteristics like the number of routines’ parameters (Fortran
arguments). Each model has at least one routine in the range of 21-50 param-
eters, that could be considered as a very high value as regards the number of
parameters that a routine should have. Furthermore, we have found that the
model which has the lowest maximum amount of parameters in a routine is

21

21 but the high maximum is 378 (see Table 7). The range is huge, and the
corresponding restructuring work would be correspondingly huge too.

Another interesting value found was the number of lines per routine, for
which the minimum average per model is 75 lines per routine and a maximum
average of 275 lines per routine. The routine with the absolute highest value
in lines of code has 11975 lines (see Table 6). It might be indicating that
some modularization techniques should be implemented by computing scientists
[8, 58, 12]. A third remarkable aspect that could be extracted taking into
account Table 4 and Table 13 is the possible cyclomatic complexity reduction
that could be made by using more data types, thus taking advantage of data
abstraction for decreasing some complexity aspects. A fourth observed feature
in the source code is the intensive use of the C preprocessor directives and
Fortran include directive (see Table 15) for including common block definition,
for portability, for managing configurations activities, and so forth.

Finally, the data collected seems to validate the existence of a “mismatch”
or a gap between scientific software production and guidelines and good prac-
tices suggested by the software engineering community [35, 8]. These results
enable us to determine the need of (semi)automated tools to transform certain
not desired software features found in the source code in order to help it evolve.
These transformations should allow developers to automatically eliminate ob-
solete features by the corresponding replacement, to introduce new language
features to the source code, etc. More elaborate transformations could include
the automatic inclusion of new user-defined data types.

7 Related Works

In 1971, Donal Knuth [38] analysed a set of Fotran programs “in an attempt to
discover quantitatively what programmers really do”. To perform such analysis
he studied a variety of programs written by different people: a set of 400 pro-
grams distributed in 250000 punched cards. Knuth provided a thorough study
of the Fortran 66 constructs’ usage on those 400 programs. One remarkable
aspect of the study was the handmade analysis that was performed. Further re-
search attempted to analyse a set of 255 Fortran Programs by using a tool called
FORTRANAL which performs the static analysis to gather information about 31
metrics [40]. The aim of this work was to find some correlation among different
groups of metrics. The study carried out in [60] focused on finding Fortran
programs’ characteristics that were relevant in the parallelization process from
the compiler writers view point, in order to contribute to data dependence anal-
ysis and program transformation. A series of articles studying the relationship
between Fortran programs and complexity metrics were published by Victor
R. Basili. In [9] complexity metrics were used to evaluate software quality, to
estimate software cost, and to evaluate the stability and quality of a software
product during the development process. In [10] a set of metrics were studied in
order to determine the relationship among some software aspects such as effort,
program bugs, among others. Software was analysed by using an automated
tool called SAP.

Software metrics were also used to evaluate system maintainability. In [16]
five methods for quantifying the maintainability of a program were studied.
That work indicates that automated analysis can be used to “evaluate and

22

compare software”. Nowadays, software engineering techniques and principles
are widely adopted in the software industry. However, as contradictory as it may
sound, evidence seems to indicate that some of the problems that had already
been overcome years ago in the “spaghetti code wars of the 1970s” strike back
rather periodically [50].

Scientific software has been the subject of thorough studies [8, 58, 12, 29,
20, 35, 36, 70, 57]. All of those articles shed light on the fact that there is a
mismatch, to say the least, between well-known and broadly accepted software
engineering methods and practices and those methods and practices used on
scientific software building processes.

8 Conclusions and Further Work

In this article we have studied clasical scientific software (a set of GCM pro-
grams), in order to analyse the way Fortran is used in the scientific software
environment. Our approach has been based on traversing the AST program
structure in order to obtain the required information. We have collected data
regarding different program aspects such as routine complexity, number of pa-
rameters, routine length, abstraction usage, obsolete language features, and C
preprocessor usage among others.

Our approach is based on gathering the information in the precise moment
the user requires it, no previous preprocessement is required. In addition, our
measurement process has been integrated to a modern IDE, which implies that
programming and measurement tasks can be performed at the same time and
in the same environment.

The results indicate that software techniques adopted by the industry are
different from those used in scientific software production. There is a strong
need to adapt scientific software to new standards mostly to take advantage of
new hardware processing facilities. The path is not straightforward, though:
source code optimization and parallelization can be made with less effort if the
source code is first made readable and, at least, less prone to error (e.g. by
being -some Fortran- standard compliant).

We will continue our work following several guidelines, taking into account
the work in this article as well as previous work on Fortran source code trans-
formations and Fortran legacy software [47, 66, 67]:

• Implement new metrics to be applied in Fortran Source code.

• Integrate these metrics on modern IDE.

• Measure more Fortran source code in order to determine and prioritize
which transformations should be applied on the source.

• Collect more data in order to determine new trends in scientific software
production.

Also, source code metrics help in the analysis of how successful are source code
transformations, since the original and transformed source code can be measured
and, hence, objectively compared.

23

Acknowledgements

We would like to thank Beijing Climate Center, China Meteorological Adminis-
tration, Commonwealth Scientific and Industrial Research Organisation in col-
laboration with the Queensland Climate Change Centre of Excellence, Institute
for Numerical Mathematics, Institut Pierre-Simon Laplace, Met Office Hadley
Centre, Max Planck Institute for Meteorology (MPI-M), NASA Goddard In-
stitute for Space Studies, NASA Global Modeling and Assimilation Office, Na-
tional Center for Atmospheric Research, Geophysical Fluid Dynamics Labora-
tory, National Science Foundation, Department of Energy, National Center for
Atmospheric Research, Centro Euro-Mediterraneo per I Cambiamenti Climatici,
Center for Ocean-Land-Atmosphere Studies and National Centers for Environ-
mental Prediction for providing us with the information and model source code
to achieve the research aims.

References

[1]

[2] Alfred V Aho et al. Compilers: principles, techniques, & tools. Pearson
Education India, 2007.

[3] Zubair Akhtar and Wenbin Ji. On the relation of preprocessor directives
& bugs.

[4] American National Standards Institute. X3. 9-1978. American National
Standards Institute, New York, 1978.

[5] American National Standards Institute. American National Standard for
programming language, FORTRAN — extended: ANSI X3.198-1992: ISO/
IEC 1539: 1991 (E). American National Standards Institute, September
1992.

[6] J. Backus. The History of Fortran I, II, and III. ACM SIGPLAN Notices,
13(8):165–180, 1978.

[7] David W Balmer and Ray J Paul. Casm-the right environment for simula-
tion. Journal of the Operational Research Society, pages 443–452, 1986.

[8] Victor R Basili, Daniela Cruzes, Jeffrey C Carver, Lorin M Hochstein,
Jeffrey K Hollingsworth, Marvin V Zelkowitz, and Forrest Shull. Under-
standing the high-performance-computing community. 2008.

[9] Victor R Basili and Tsai-Yun Phillips. Evaluating and comparing soft-
ware metrics in the software engineering laboratory. ACM SIGMETRICS
Performance Evaluation Review, 10(1):95–106, 1981.

[10] Victor R. Basili, Richard W Selby Jr, and T Phillips. Metric analysis
and data validation across fortran projects. Software Engineering, IEEE
Transactions on, (6):652–663, 1983.

[11] Michael Bray, Kimberly Brune, David A Fisher, John Foreman, and Mark
Gerken. C4 software technology reference guide-a prototype. Technical
report, DTIC Document, 1997.

24

[12] Jeffrey C Carver, L Hochstein, Richard P Kendall, Taiga Nakamura, Mar-
vin V Zelkowitz, Victor R Basili, and Douglass E Post. Observations
about software development for high end computing. CTWatch Quarterly,
2(4A):33–37, 2006.

[13] Jeffrey C Carver, Richard P Kendall, Susan E Squires, and Douglass E
Post. Software development environments for scientific and engineering
software: A series of case studies. In Software Engineering, 2007. ICSE
2007. 29th International Conference on, pages 550–559. IEEE, 2007.

[14] Ian D. Chivers and Jane Sleightholme. Compiler support for the fortran
2003 and 2008 standards revision 14. In ACM SIGPLAN Fortran Forum,
volume 32, pages 21–34, 2013.

[15] Istehad Chowdhury and Mohammad Zulkernine. Can complexity, coupling,
and cohesion metrics be used as early indicators of vulnerabilities? In
Proceedings of the 2010 ACM Symposium on Applied Computing, pages
1963–1969. ACM, 2010.

[16] Don Coleman, Dan Ash, Bruce Lowther, and Paul Oman. Using metrics
to evaluate software system maintainability. Computer, 27(8):44–49, 1994.

[17] Nelson Cowan. The magical number 4 in short-term memory: A reconsid-
eration of mental storage capacity. Behavioral and brain sciences, 24(1):87–
114, 2001.

[18] Edsger Wybe Dijkstra, Edsger Wybe Dijkstra, and Edsger Wybe Dijk-
stra. Notes on structured programming. Technological University Eind-
hoven Netherlands, 1970.

[19] E.W. Dijkstra. Letters to the editor: go to statement considered harmful.
Communications of the ACM, 11(3):147–148, 1968.

[20] Steve M Easterbrook and Timothy C Johns. Engineering the software
for understanding climate change. Computing in Science & Engineering,
11(6):65–74, 2009.

[21] Paul N Edwards. A brief history of atmospheric general circulation mod-
eling. International Geophysics, 70:67–90, 2001.

[22] Michael D. Ernst, Greg J. Badros, and David Notkin. An empirical anal-
ysis of c preprocessor use. Software Engineering, IEEE Transactions on,
28(12):1146–1170, 2002.

[23] J-M Favre. Preprocessors from an abstract point of view. In Software
Maintenance 1996, Proceedings., International Conference on, pages 329–
338. IEEE, 1996.

[24] Louis Fein. The role of the university in computers, data processing, and
related fields. In Papers presented at the the March 3-5, 1959, western joint
computer conference, pages 119–126. ACM, 1959.

[25] Norman E Fenton and Martin Neil. Software metrics: successes, failures
and new directions. Journal of Systems and Software, 47(2):149–157, 1999.

25

[26] A. FORTRAN. X3. 9-1966. American National Standards Institute Incor-
porated, New York, 1966.

[27] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns.
Addison-Wesley Reading, MA, 1995.

[28] John Guttag. Abstract data types and the development of data structures.
Communications of the ACM, 20(6):396–404, 1977.

[29] Jo Erskine Hannay, Carolyn MacLeod, Janice Singer, Hans Petter Lang-
tangen, Dietmar Pfahl, and Greg Wilson. How do scientists develop and
use scientific software? In Proceedings of the 2009 ICSE Workshop on Soft-
ware Engineering for Computational Science and Engineering, pages 1–8.
IEEE Computer Society, 2009.

[30] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantita-
tive Approach. 5th edition, 2011.

[31] Gerard J Holzmann. The power of 10: rules for developing safety-critical
code. Computer, 39(6):95–99, 2006.

[32] John F Isner. A fortran programming methodology based on data abstrac-
tion. Communications of the ACM, 25(10):686–697, 1982.

[33] ISO. ANSI/ISO/IEC 1539-1:1997: Information technology — program-
ming languages — Fortran — part 1: Base language.

[34] ISO. ANSI/ISO/IEC 1539-1:2004(E): Information technology — Program-
ming languages — Fortran Part 1: Base Language. pages xiv + 569, May
2004.

[35] Diane F Kelly. A software chasm: Software engineering and scientific com-
puting. Software, IEEE, 24(6):120–119, 2007.

[36] Richard Kendall, Jeffrey C Carver, David Fisher, Dale Henderson, Andrew
Mark, Douglass Post, Clifford E Rhoades, and Susan Squires. Development
of a weather forecasting code: A case study. Software, IEEE, 25(4):59–65,
2008.

[37] Brian W Kernighan, Dennis M Ritchie, and Per Ejeklint. The C program-
ming language, volume 2. prentice-Hall Englewood Cliffs, 1988.

[38] D.E. Knuth. An empirical study of fortran programs. Software: Practice
and Experience, 1(2):105–133, 1971.

[39] Donald E Knuth. Structured programming with go to statements. ACM
Computing Surveys (CSUR), 6(4):261–301, 1974.

[40] Hon Fung Li and William Kwok Cheung. An empirical study of software
metrics. Software Engineering, IEEE Transactions on, (6):697–708, 1987.

[41] Peter Lynch. The origins of computer weather prediction and climate mod-
eling. Journal of Computational Physics, 227(7):3431–3444, 2008.

[42] Cohen Malcom. Fortran: A Few Historical Details.
http://www.nag.co.uk/nag ware/NP/doc/fhistory.asp, October 2004.

26

[43] Syukuro Manabe and Kirk Bryan. Climate calculations with a combined
ocean-atmosphere model. J. Atmos. Sci, 26(4):786–789, 1969.

[44] A. Markus. Design patterns and Fortran 2003. In ACM SIGPLAN Fortran
Forum, volume 27, pages 2–15. ACM, 2008.

[45] Thomas J McCabe. A complexity measure. Software Engineering, IEEE
Transactions on, (4):308–320, 1976.

[46] Steve McConnell. Code complete. O’Reilly Media, Inc., 2004.

[47] M. Méndez, J. Overbey, and F.G. Tinetti. Legacy fortran software: Ap-
plying syntactic metrics to global climate models. In XVIII Congreso Ar-
gentino de Ciencias de la Computación 2012, pages 847–856, 2012. Avail-
able at https://lidi.info.unlp.edu.ar/~fernando/FortranLegacy/.

[48] Tom Mens and Serge Demeyer. Future trends in software evolution metrics.
In Proceedings of the 4th international workshop on Principles of software
evolution, pages 83–86. ACM, 2001.

[49] M. Metcalf. The seven ages of fortran. Journal of Computer Science and
Technology, 11(1):1–8, 2011.

[50] Tommi Mikkonen and Antero Taivalsaari. Web applications: Spaghetti
code for the 21st century. 2007.

[51] George A Miller. The magical number seven, plus or minus two: some
limits on our capacity for processing information. Psychological review,
63(2):81, 1956.

[52] Ricardo Miranda, F Braunschweig, P Leitao, R Neves, F Martins, and
A Santos. Mohid 2000, a coastal integrated object oriented model.
Southampton, UK: WIT Press, Hydraulic Engineering Software VIII, 2000.

[53] Peter Müller. Constructing climate knowledge with computer models. Wi-
ley Interdisciplinary Reviews: Climate Change, 1(4):565–580, 2010.

[54] J Pipitone and S Easterbrook. Assessing climate model software quality: a
defect density analysis of three models. Geoscientific Model Development
Discussions, 5(1):347–382, 2012.

[55] Miriam Schmidberger and Bernd Brugge. Need of software engineering
methods for high performance computing applications. In Parallel and
Distributed Computing (ISPDC), 2012 11th International Symposium on,
pages 40–46. IEEE, 2012.

[56] Judith Segal. Models of scientific software development. SECSE 08, First
International Workshop on Software Engineering in Computational Science
and Engineering, Leipzig, Germany, May 2008.

[57] Judith Segal. Some challenges facing software engineers developing software
for scientists. In 2nd International Software Engineering for Computational
Scientists and Engineers Workshop (SECSE ’09), ICSE 2009 Workshop,
Vancouver, Canada, pages 9–14, May 2009.

27

[58] Judith Segal. Scientists and software engineers: A tale of two cultures.
Proceedings of the Psychology of Programming Interest Group, PPIG 08,
pages 10–12, September 2008.

[59] M Shaw et al. Computer science: Reflections on the field, reflections from
the field, 2004.

[60] Zhiyu Shen, Zhiyuan Li, and P-C Yew. An empirical study of fortran pro-
grams for parallelizing compilers. Parallel and Distributed Systems, IEEE
Transactions on, 1(3):356–364, 1990.

[61] M Shepperd and Darrel C Ince. A critique of three metrics. Journal of
Systems and Software, 26(3):197–210, 1994.

[62] Martin Shepperd. A critique of cyclomatic complexity as a software metric.
Software Engineering Journal, 3(2):30–36, 1988.

[63] Herb Sutter. The free lunch is over: a fundamental turn toward
concurrency in software. Dr. Dobb’s Journal, 30(3), March 2005.
http://www.gotw.ca/publications/concurrency-ddj.htm, (update 2009).

[64] Andrew Sutton and Jonathan I Maletic. How we manage portability and
configuration with the c preprocessor. In Software Maintenance, 2007.
ICSM 2007. IEEE International Conference on, pages 275–284. IEEE,
2007.

[65] K.E. Taylor, R.J. Stouffer, and G.A. Meehl. An overview of cmip5 and
the experiment design. Bulletin of the American Meteorological Society,
93(4):485, 2012.

[66] F. G. Tinetti and M. Méndez. Fortran legacy software: source code up-
date and possible parallelisation issues. ACM SIGPLAN Fortran Forum,
31(1):5–22, April 2012.

[67] Fernando G. Tinetti, Mariano Méndez, and Armando de Giusti. Restruc-
turing fortran legacy applications for parallel computing in multiprocessors.
The Journal of Supercomputing, 64(2):638–659, 2013.

[68] Warren M Washington, Lawrence Buja, and Anthony Craig. The computa-
tional future for climate and earth system models: on the path to petaflop
and beyond. Philosophical Transactions of the Royal Society A: Mathemat-
ical, Physical and Engineering Sciences, 367(1890):833–846, 2009.

[69] Spencer Weart. The development of general circulation models of climate.
Studies In History and Philosophy of Science Part B: Studies In History
and Philosophy of Modern Physics, 41(3):208–217, 2010.

[70] Gregory V Wilson. Where’s the real bottleneck in scientific computing?
American Scientist, 94(1):5, 2006.

[71] Photran, an Integrated Development Environment and Refactoring Tool
for Fortran. http://www.eclipse.org/photran/.

[72] Coupled Model Intercomparison Project Phase 5. http://cmip-
pcmdi.llnl.gov/cmip5/.

28

[73] Some Work on Fortran Legacy Code. https://lidi.info.unlp.edu.ar/

~fernando/FortranLegacy/.

29

https://lidi.info.unlp.edu.ar/~fernando/FortranLegacy/
https://lidi.info.unlp.edu.ar/~fernando/FortranLegacy/

	1 Introduction
	2 Climate Models and Weather Forecast: An Historical Review
	2.1 Climate Models and Climate Change

	3 Software Engineering and Scientific Computing
	3.1 Scientific Computing and Fortran

	4 Specific Software Metrics and Methodology
	4.1 Metrics
	4.2 Methodology

	5 Results
	5.1 Size and Complexity Related Results
	5.2 Subprograms's Metrics
	5.3 Go To and Deleted and Obsolescent Fortran Features
	5.4 Common Blocks and Equivalence
	5.5 Loops
	5.6 User Defined Types
	5.7 Argument Intent
	5.8 Preprocessing Directives

	6 Discussion
	7 Related Works
	8 Conclusions and Further Work

