Appendix B: Sequential Processing
Performance of Computers

This appendix is dedicated to the description of computer performance obtainedapptieation
field of linear algebra problems, especially those that can be expressieahdtion of matrix
multiplications.

Computer performance characterization is a very well known and studied prdbleseveral
reasons, and is essentially used to estimate the type of problems that samdzkin terms of size
and running times.

Although it is important to characterize computer performance, this Appenslixdascribes how
code optimization affects performance. In addition, this appendix shows how thiszgitom has
varying effects depending on each computer's hardware characteristics.

In the specific case of parallel applications, it is essential to know tleige sequential
performance in order to characterize, with the same precision, the gaamnettby parallel
processing. Similarly, it is possible to estimate - or at least we colitht the minimum and
necessary data to estimate - the cost-benefit relation of parallel cerapuih general, and of
computers networks processing in parallel, in particular.
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B.1 Introduction

Computer performance characterization has been used for several purposeswdmebng

we can mention [7]:

- Estimation of problem solution capacity, both in reference tostheof problems to be
solved and the necessamning times
Verification of computers. costs, not only in terms of hardware but also of theseacy
base and application software.
Choice of the most adequate computer for the problem or type of problem to be solved.
In this case the performance rate is implicitly used as a comparing paaofethe
computers to be used.

Traditionally, the numerical computing capacity of a computer has been ch@radtby

the quantity of floating point operations per time unit (Mflop/s: millions of floatingnpoi

operations per second) or by a number identifying it univocally (SPEC: [6] [15]). Two

general lines have also been traditionally adopted for the computation of thisrparfce
rate:

1. Processing hardware analysis: floating point unit/s, design of floating poimts uni
(pipelines, internal registers, etc.), cache memoryl/ies (levelss setc.), main memory
capacity, etc.

2. Execution of a program or a set of specific computing programs ballethmarks

Processing hardware analysis generally gives rise to what is knoywaaksperformance

or maximum theoretical performance of the computer. This characterization line of
performance has normally been adopted by computer manufactures, and the facisthat i
rather unlikely to be obtained by a specific application is already accepted.

Benchmarks use has become daily due to the existing gap between the peak perorma
and the real performance normally obtained by applications when running in comgiuters.
is really difficult to choose a set of programs that meat the charaatsrist or represents,

the completeange of possible programs that can be run over a computer. Consequently,
there exist many used benchmarks and there are even more that are proposed.

When the type of specific applications over which computers are to be used isdjefine
characterization in this application field without using the most generattraarks is still
really useful. This is the case of those applications defined in terms ofixmatr
multiplications [2] [4], and thus the very matrix multiplication performansenhat can
more accurately be obtained within this field and what is going to be takeafasence
benchmarkor experimentation.

Using such a specific benchmark - and so closer to an application to be sdiasdin the
context of parallel applications, one more advantage: it accurately defineputens
relative speed for local processing. Even though this index (computing relgezsis

not so necessary or important in the context of parallel computers with homogeneous
processing elements, it is essential for parallel computing with heteeogs processing
elements. Without this type of information, it is really difficult to reaglcomputational

load balance.
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B.2 Computers Used

Choosing computers to characterize sequential performance, and trying ésengfpwith

this characterizatiorall the possible cases, is almost as difficult as choosing the set of
programs that allow comparing computer performance. In the case of parallputom
over installed local networks, it is clear that the computers interconneote local
network must be analyzed, though the variety of possibilities is really wide.

The three local networks which we will work on are those described in detaippendix
A:
- CeTAD: Center for Analog-Digital TechniquesCéntro de Técnicas Analdgico-
Digitales), Electrontechnics Department, Faculty of Engineering, National Uniyessi

La Plata. It is the eldest network installed, and its computers are useset@ral
purposes.

LQT: Theoretical Chemistry Laboratory Lgboratorio de Quimica Tedriga
CEQUINOR, Chemistry Department, Faculty of Exact Sciences, Ndtldniaersity of

La Plata. This network - installed several years ago - aims at solvingerncah
problems; sequential and parallel works developed with PVM and Linda are run.

LIDI: belongs to the Laboratory of Research and Development in Computer Ssience
(Laboratorio de Investigacion y Desarrollo en Informaficdaculty of Computer
Sciences, National University of La Plata. It is dedicated to the tagcbf parallel
programming and research. It can be directly considered as of Beowulfalfpeugh

not belonging to the most expensive in terms of quantity of machines and
interconnection network.

Both the CeTAD network and LQT have several interesting characterietitse study of
performance with the aim of using them for parallel computing:
Preexistence: they were not built to be studied but to be used. In this sensarehesi
and have evolved as local networks do with the updating and addition of computers.
Heterogeneity: it can be considered as a consequence of its preexisteheeptegent
research work, but it is important to notice that both computer networks have quite
different machines at least in terms of computing speed and, in the case o TADC
network, even at the level of computers's architecture.
They are meant for sequential computing: even though parallel programs arelrih in
networks, at least when installed, machines were dedicated to sequentialiting. In
fact, several of the computers of the CeTAD local network exist for stragbjuential
tasks and have been adapted for parallel computation by installing the necessary
software.
Standard and low cost hardware: both computers and interconnection networks are
widely known and have low costs. In fact, more than one computer used can be
considered as ready to be dropped out.

LIDI network provides a standard research framework of parallel processicgmputers
networks. More specifically: the computing and communication hardware is hommggene
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and the interconnection network can be considered as the proper one since it coinitides w
the basic ideas of a Beowulf installation.

In Appendix A, the three local networks are described with the most outstanding
characteristics of each computer. On the other hand, it is important (andag,atws one

of the most important objectives of this Appendix) to identify the general perforenanc
characteristics in computers networks beyond particular details of eaathimea
Consequently, we will try to come up to more general performance conclusions about
heterogeneous computing hardware.

B.3 Description of Experiments

Three large groups of experiments were carried out, depending on the way of mgdifyi

designing- implementing the solution to the problem:

1. Non-optimized code. Matrix multiplication is codified with the threeseiaal iterations,
without any effort neither on the part of the implementation nor the compiler.

2. Code optimized by compiler. In this case, the code is compiled without optim(ttiag
three iterations) with all the available optimization options of the compileddsr the
computer processor.

3. Optimized code at the source program level. In this case, the code optomizéort is
carried out at the source code level (without recurring to the machine code); hehigle
compiler's optimization options can be optionally used, though this is considered as
unnecessary.

For each type of optimization, the performance obtained is computed for sevarslddi
possible matrices. The variation of the problem size to be solved (in termsmbny and
computing requirements) is usual in this type lmfnchmarksand aims at identifying
possible dependences of a computer.s sustained performance on the application size.

In the following subsections, we describe:

- The most important characteristics together with the objective/s of eactheof
optimization types, always within the context of sequential processing andotha
numerical problems, in general, and of matrix processing, in particular.

The sizes of matrices chosen to estimate computer performance, andtén@a dyy
which they are chosen.

The most important characteristics of the experimentation in each comptnieh in a
certain way is a view of a higher level of abstraction for the two previous points.

B.3.1 Code without Optimization

The performance obtained with the matrix multiplication without optimizingas in fact,

of great use as performance index since, without any effort on the part of the program
we can obtain something better properly using the available compiler's options. &s#)is ¢
it is necessary to know well only the compiler and it is very useful to know the
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characteristics of the processor.

The performance obtained with the non-optimized code will be used with two objectives:

1. As gain reference in each computer for the other two cases of optimizatidhe
compiler and of the source code.

2. As reference to compare the optimization effects in heterogeneous computers.

B.3.2 Compiler Optimization

In the case of the compiler optimizations, there are no disadvantages at thetoahce
level. As already explained, we should know the compiler and the processor chatiaste
related to the arithmetical operations and/or design of the cache mermsoHdeever, it is
always convenient to take into account the fact that the best compiler for eagiutasris
usually that provided by the manufacturer. According to the evolution in the development
and commercialization of computers, the compiler was initially provided by the
manufacturer company without additional costs. From many years now, the compiler is
optional and the license must separately be bought from the manufacturer (of the
executable code and the owned libraries). This situation has now at least two
consequences:
1. Many of the installed computers do not have the (most appropriate) compiler of the
computer.s manufacturer company.
2. Free-use compilers. utilization has become even more popular; e.g., ggugdor C
language, which can be obtained via Internet in binary and / or source code.

From the beginning it has been established that computers are meant to be usad such
they are installed and, in any case, with the minimum software (pantigutzompilers)
installation additional cost. In consequence, not only it is advisable to use cospuitier
free-use compiler, such as gcc/gcc-egcs, but it is also necessgugndity its efficiency in
each machine. The fact of characterizing computer performance with a evmpil
particular is also characterizing, in a way, the compiler's perforemanatself. Beyond
particular conclusions arrived at with this respect, which are not in pre@ptopic of
research of this thesis, there are other considerations to take into account:
- Generally, the compiler installed in each machine will be that usedakssmed that it
is thebestor, at least, that with minimum cost.
The used computer-compiler combination may not be the best and, thus, it is useful for
characterizing the computer in particular but it is not for comparing machingsnaral
(e.g., at the level of computers models).

According to the latter consideration, the norm of making reference to computé¢ngiby
names ljostnames without any reference to trademarks and/or models, is adopted in all
the performance characterization graphics (in this Appendix and all of thoséeof t
experimentation). Even though the names of the machines do not count with any
information @ priori) related to the performance - this can obscure the interpretation of the
results -, it is not proper to characterize the performance at the leveldeinraks . models

of computers when the compiler used is not thest (assuming that thdestis that
provided by the machine's manufacturer) that can be used in each computer. Omethe ot
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hand, Appendix A givesll the details of each computer, and in the interpretation of the
results we will mention explicitly each of those considered as important.

B.3.3 Source Code Optimization

It is very difficult to assurea priori that the source code optimization made is effective.
However, in the field of numerical computing in general, there exist many ex =i
publications) in relation to the ways of taking the utmost advantage of the prnogessi
hardware characteristics. Some of the optimizations already considestdnasrd at the
level of source code are [3] [1] [10] [11] [5]:
Intensive use of internal registers dedicated to numerical data.
Block processing in order to take advantage of the data assigned in cache memory/ies.
Maximum use of the running units implemented with pipelines (identification of hops
and dependencies).
Striping of command that operates with floating point data and integer datahéor t
maximum possible use of superscalar processors.
Identification andsolationof operations with data dependencies that reduce superscalar
processor performance.

In the particular case of matrices multiplication, there are alreadylat@a several
optimization sources and several information sources, even at the level ot smde
available in Internet. On the one hand, we can even expect that each procdissavevits
own set of numerical computing routines, such as the particular case of Pehtunull
Pentium 4 of Intel, which set out several available [9] routines in source code (thoug
assembler language, at the level of processor.s commands), which can be obiained
Internet [13].

Even though libraries optimized by the processors manufacturer companies ltfentsa

be really attractive (and of free use), two drawbacks are still present:
Not all the processors have such type of code-library available.
The source code usually depends on a compiler in particular; in the previous case of
Intel, owner compilers are necessary (whose utilization depends on buyingna€ljce
both of C language and assembler language.

On the other hand, there are many libraries already available in Interneh \ghiterate
optimized code in general, normally in C language or FORTRAN in order to beiben
locally in computers independently of the installed compiler [3]. One of the most
significant projects, and under development, is that called ATLAS (Automlbtiduned
Linear Algebra Software) [12] [14]. Like most of the packages in the field oédr
algebra. ATLAS was initially and exclusively dedicated to matrixeqigential)
multiplication and, subsequently, was extended to all Level 3 LAPACK [4].sThi
alternative is satisfactory for several reasons:

- Itis of free use, the only cost is that of the installation. This normally insgistalling
code obtained in Internet and executed by a set of programs (scripts) in ordentdy
the processing hardware and optimize the code according to what is estimatexbéy t
programs. Finally, a set of libraries containing the optimized routines arndcc#mabe
used from the programs are available.
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Optimization concepts are clear enough to be implemented independently ofrg ¢ibra
distribution in particular. This means that it is not even necessary to udaraayl

available in Internet but an appropriate code can be developed with its further cost.
It is quite independent of the processor, since it can be done in source code, such as C or
FORTRAN, and it can thus be locally compiled in each computer.

Since the code is optimized without making a specific use of a compiler, the oatianz
options of the compiler do not usually improve the running code. Once more, it is
necessary to recall that these optimizations are appropriate for this typeatfx
processing and cannot necessarily be made in all the cases or for all the tapica
general.

The source code optimization will also be referred taasplete optimizatigrsince it is
generally the best that can be done in order to obtain optimal or near-optimalrpenice
of each computer.

B.3.4 Sizes of Matrices to be Multiplied

The sizes chosen of the matrices to be multiplied (square matrices amexs, ofnxn
elements) are related to the characteristics of the matrix progeasd of each computer.s
memory subsystem. As example: if matrices are small enough to be cefgassigned in
the first level of cache memory (L1 Cache), the sustained performancebwilieally
satisfactory and with values near the processor.s theoretical optimum. tiearontrary,
matrices cannot be assigned in any of the levels of cache memory, the perfermiiinc
depend almost directly on the data access pattern to be processed.

Given the heterogeneity of computers with which we are experimenting (Appéndinrd,

in particular, the different sizes and levels of the computers. cache mersevgral
relatively small sizes of matrices with respect to the size of thie mamory were taken as
reference: matrices of order= 100, 200, 400. Numerical data are represented as floating-
point numbers of simple precision (norm IEEE 754 [8]) of four bytes. In consequence, for
n =100, the quantity of necessary data to feed a matrix will be é%4@@tes, slightly less
than 40 KB of data.

Two values were taken as representative of the matrix sizes that can bedhandI32 MB

main memory: matrices of order= 800 and of orden = 1600. With matrices of 800x800
elements, the quantity of required memory to contain the three matricesenieg in a
multiplication (C = A x B) is of approximately 7.3 MB (approximately, 22.8% of tbtat

of 32MB of main memory). In the case of matrices of 1600x1600 elements, the
approximate quantity of memory that is required is 29.3 MB, which represents the 91.6%
of the total of 32 MB of main memory.

In the case of computers with 32 MB of main memory, the size of problemm4t600
can be considered as enough, or at l@ast1600 is big enough so that the cache memory
size will not contain a relatively big part of the problem. However, taking ictmant that
there are machines with 512 MB of main memory, values bfg enoughwere looked for

in order to fill the main memory completely.
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In consequence, in all the computers, the experiments were carried out quitlies
matrices of orden = 100, 200, 400, 800 and 1600. In the case of the computers with main
memory of 64 MB or 512 MB, and in order to have reference values to be used in the
speedup computation, experiments with bigger matrices were carriech@atdition, since
there always exists the tendency to use computers to the maximum of theaitiespa
experiments with the maximum possible in terms of matrices sizes alsoecarried out.

As expected, this depends not only on the size of the main memory installed but dfs® on
swap space set up in the system.

For computers of 64 MB of main memory, the sizes considered as representdtihes
problems that require a good part of or all the main memory correspond to the values of
matrix ordersn = 1900, 2000, 2200 and 2400. These sizes of matrices imply the
approximate percentages of memory requirements (assuming 64 MB in the whole) of
65%, 72%, 87%, and 103%, respectively. Recall that it is possible to experiminthei
values near and higher than the 100% of main memory requirements of the set up swap
memory size.

In computers of 64 MB of main memory, the maximum size with which the matrix
multiplication could be carried out is for= 3200, and, as reference, experiments with
3000 were also carried out. These matrices sizes imply the approximathiages of
memory requirements (assuming 64 MB on the whole) of 183 % and 161%, respectively.
As previously mentioned, the maximum sizes of the problem depend on three aspects:
installed main memory
swap memory set up
operating system, since it is the one which, as a last resort, decides whandel a
process due to lack of memory.
And these three aspects coincide, at least, in the fastest machines a@ftA®@nd LIDI
networks.

For computers of 512 MB of main memory, the sizes considered as representdtilies
problems requiring a good part or all of the main memory correspond to the values of
matrix ordersn = 4000, 5000, 6000 and 7000. These sizes of matrices imply approximated
percentages of memory requirements (assuming a 412 MB on the whole) of: 36%, 56%,
80%, and 110% respectively. Recall that it is possible to experiment with thesvaear

and higher than the 100% of main memory use in order to store data depending on the
memory size set up swap.

In computers of 512 MB of main memory, the maximum size with which the matrix
multiplication could be carried out is far = 9000, and, as reference, experiments with
order n = 8000 were also carried out. These matrices sizes imply the approximated
percentages of memory requirements (assuming 512 MB on the whole) of 181% and 143%
respectively.

In brief, in the fastest computers of each local network, we have experichentke limits
of the total memory capacity. In all the cases, when we show each compuiamence,
we also show the maximum matrices size that can be solved widwappingmemory
pages.
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B.4 Matrix Multiplication Performance

The following subsections show the running times and also the performance exgressed
Mflop/s obtained in each of the computers which solves a matrix multiplicattmording

to the type of optimization used. When necessary, some comments explaininduie ofa
the computer performance indexes are also included. Since the eight computerklbi the
local network are equal, all the data of the experimentation are shown only for tmenof
Finally, another subsection is also included in order to compare performaruegatime
different types of optimization chosen.

B.4.1 Performance without optimization

Fig. B.1 shows the running times (in seconds) obtained for the (square) matrix
multiplication of different sizes in the CeTAD computers.
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Figure B.1: Running Times in CeTAD without Optimization.

Fig. B.2 shows the running time in the LQT computers. Thexagfghe graphic shows the
value ofn (matrices size) and the axishows the running time in logarithmical values.

Even tough Fig. B.1 and Fig. B.2 allow us to have an approximated idea of the agcess
running times in each of the computers, the logarithmical scale and the véoyrpance
index defined as the running time may complicate the results interpretatibtheAsame,
we can easily identify that for a defined matrix size, the computing spdéstatices are
noticeable.
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Figure B.2: Running Times in LQT without Optimization.

Fig. B.3 as well as Fig. B.4 show the same experiments though identifying flogp/s
obtained in the computer. What can be easily identified are the differemezsh machine
computing speeds, which are quite masked in the case of the time graphics with
logarithmical scale.

In all the computers, it is worth to note the effect the cache memory sizéhanproblem

size to be solved have on the performance. In all the cases, as the quantity of da&sjncreas
the likelihood of reusing a datum assigned in cache memory decreases sinceess ac
pattern to data is established a priori so as to take advantage of the megrarghy with

one or more levels of cache memory.
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Figure B.3: Mflop/s in CeTAD without Optimization.
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Figure B.4: Mflop/s in LQT without Optimization.

It is interesting to notice that, as processors become much faster, the impaaiecréhse

of performance when the problem increases is greater, since the relatmerynand
processing speed difference increases proportionally. For instéic®l passes from
almost 50 Mflop/s with matrices of 100x100 to 5 Mflop/S with matrices of 1600x1600,
which implies using only a tenth part of the possible performance, such like it was
measured for the problems with matrices of order 100. The differences of relative
speed between access to memory and processing generate, in turrne rejasied
differences among those computers that depend on the size of problem to be solved. For
instance, fom = 100, the computer callgglris (Fig. B.3) has almost twice the computing
power of Josrap, and forn = 1600, Josrap has a better performance thaaris. Even
though for sequential computing this gives a different idea of relative speed fereutit
sizes of problems, in the context of parallel computing, it has a direct impa¢hen
computational load balance, which should be solved by the application in function of the
data processing problem size.

B.4.2 Performance with Compiler Optimization

As previously explained, generally application programs have the minimum optionz
degree provided by the compiler for the computer (more specifically, for the m@gen

all the reported machines, the compiler usedyég/gcc-egcsand, in consequence, the
options do not vary significantly in the different machines. However, we shouldindée
account that, in a heterogeneous environment, the variety of compilers can be etipaal to
guantity of machines that are being used and, thus, knowing the compilers. details
(processors optimizations) is equally complex.

Fig. B.5 and Fig. B.6 show the running times of each of the machines of CeTAD and LQT
respectively. Like in the previous figures in which the running times can be \axtethe
axisx of the graphic corresponds to the different sizes of matrices (from matfcasier

n = 100, to matrices of order = 1600), and the axig of the graphic shows the running
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time with logarithmical scale.
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Figure B.5: Running Times in CeTAD with Compiler's Optimization.
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Figure B.6: Running Times in LQT with Compiler's Optimization.

Comparing Fig. B.5 with Fig. B.1, it can be noticed that, in many computerstotad
running time decreases for all the sizes of matrices with which the empets were
carried out. Similarly, Fig. B.6 can be compared to Fig. B.2. Once mons, hard to
identify with precision the relative speed differences due to the logaictiracale shown
by the running times.

Fig. B.7 and Fig. B.8 show the performance of each computer in Mflop/s, where the
differences in terms of running without any optimization can be better ideshtifie
Depending on the computer and the size of the problem that is being solved, the
performance improves in some cases more than the 10901 passes from almost less
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than 50 Mflop/s forn = 100 (Fig. B.4) to less than 120 Mflop/s for the same size of
problem (Fig. B.8).

70

60

50 [ ] purmamarca
Hcfl

[ ] sofia

fourier

[] Josrap
tilcara

[ paris

g cetad

B prited

40

Mflop/s

20

10—

o L5 N\ | 57 | %%.F Vi [

100 200 400 800 1600

W
S
|
T
HHHHHHHHH\HHJ\HHHH\HHH\HHHH

Figure B.7: Mflop/s in CeTAD with Compiler.s Optimization.

Even though the performance notably improves in some cases, such as in the previously
mentioned, and generally improves in all the computers, the weight of the protdermsi

the performance obtained is still important. Similarly, the performanceedse of
machines as the problem size increases has different characteristashrof them and,

thus, the differences in the machine.s relative speed are still dependent ozehaf s
problem to be solved.
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Figure B.8: Mflop/s in LQT con with Compiler.s Optimization.

Since it is very difficult that a compiler could perform all the possible optatians [12], it
is very important to count with a code specially optimized for the computers tadtesng
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used. Even more beneficial is to take advantage of the available code speciatiizegt

for the computers. The following subsection shows the experiments carried duthgt
type of code and the very important differences at the level of performance iecedsat

the conceptual level of performance, in general, of machines running processingicode i
order to carry out linear algebra operations.

B.4.3 Performance with Source Code Optimization

Fig. B.9 and Fig. B.10 show the running times of the CeTAD and LQT computers,
respectively, for each of the matrix sizes when the source code is optintzsatain the
best possible performance.
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Figure B.9: Running Times in CeTAD with Fully Optimized Code.
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Figure B.10: Running Times in LQT with Fully Optimized Code.
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Comparing Fig. B.9 with Fig. B.5, and Fig. B.10 with Fig. B.6, it is possibles¢oify a

really important and general decrease in the total running time (in allaimpaters and for

all the sizes of problems) when using source code optimization. As an exanpl&.5i
shows that the computgsurmamarca (in the CeTAD LAN) uses approximately one
second to solve a 200x200 element matrix multiplication. Fig. B.9 shows that the sa
problem in the same computer is solved in less than a tenth of a second. On the nther ha
Fig. B.9 shows that the computers of LQ@t_06 and Iqt_07 use much more than a
hundred of seconds to solve a 1600x1600 element matrix multiplication. Fig. B.10 shows
that the same problem in the same machines is solved in slightly more than ten seconds.

Each machine's performance expressed in Mflop/s is shown in Fig. B.11 fonabkines
of the CeTAD and in Fig. B.12 for the machines of LQT.
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Figure B.11: Mflop/s in CeTAD with Fully Optimized Code.
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Figure B.12: Mflop/s in LQT with Fully Optimized Code.
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If the performance values of the machines of the CeTAD of Fig. B.11 (fully optidnize
code) are compared to performance values of Fig. B.7 (compiler-optimized aodeyith

those of Fig. B.3 (non-optimized code), the performance differences are nediitgable.

Not only these differences can be verified in terms of absolute values -wh&milar to

what happens with the running time-, but also in terms of performance variations
depending on the size of problem that is solved and the relation between each rsachine
computing relative power.

From these two last figures, the characteristics that are almost@stant as the increase
of the performance absolute values of all the machines can be identified:

Performance does not decr ease as the size of problem increases: the two figures show it
clearly for almost all the computers. Despite the high heterogeneity, tHermpance
follows this "rule" regardless processors or clock cycles. Exceptionsémabe identified
appear in Fig. B.11, and are the computgksara andcfl. In both cases, the performance
degrades noticeably for the valuerof 1600. In the case dflcara, it passes from slightly
more than 70 Mflop/s fom = 800 to 50 Mflop/s (decrease of almost the 30% of the
performance) forn = 1600, andcfl passes from slightly more than 240 Mflop/s to
approximately 160 Mflop/s (decrease of almost 35%) for the gize€800 and n = 1600,
respectively. In both cases, this is due to the relation between the dize ofain memory

and the size of the problem. For= 800, the amount of required memory for the matrices

is slightly more than 7 MB and, thus, there is enough space in all the machines; wirereas f
n = 1600 the amount of required memory is more than 29 MB. Bothlgara and incfl
(cetadfomecl) something similar also happens: the operating system activity report shows
that they have to recur to the swap memory space, even though their main msmob82

MB and, in principle, they can contain all the processed data. It should béeckdaht the

main memory must contain the operating system kernel (Linux), parts of theomehat

are not possible to send to swap space (operating system buffers, for ifstamtea
minimum code of the very application. In addition, since the computing power affthe
processor (Celeron 300 MHz) is more than three times the powklcafa (Pentium 133
MHz), it is expected that the impact on the performance decrease will bergreat

Performance is almost constant or slightly increases when the problem is bigger. It

can be proved in both figures with the previously mentioned exceptions, for eabtle of t
computers (once more, independently of the processors and the machines. hetejogeneity
The basis for following this rule is the block processing carried out over dath. tiftae a

datum is assigned in cache memory, it is reused to the maximum, sincetthaat@ss
pattern (in memory) is specially codified with this end. This implies ihareasing the
amount of data does not increase the number of failures in cache memory and, what's more
increasing the amount of data in the case of matrix operations, and, in partafulaatrix
multiplications, implies that it is possible to increase the number of aese®scache
memory with the same data. In this way the performance increase whezéhaf snatrices
increases can be explained, since the data assignment in cache is stitess to main
memory but, once in cache memory, it can be reused more times (thus incréasing
number of "hits" of cache memory) because each datum has more operations to carry out.

The relation between computers computing speeds is almost constant, without
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variations higher than 10%. This characteristic can be identified as a consequence of the
almost constant performance or of the slight increase of the performance previously
explained, though within the context of parallel applications that are solved in
heterogeneous computers, it is really important and it should be necessarialyeea.

For instance, in Fig. B.12 it can be noticed that complger02 has a computing power of
approximately more than a third of that of Iqt_03 in the 100x100 matrices processitg,
both this and this speed relation are kept approximately constant independently of the
matrices sizes that are processed.

From the point of view of parallel applications, this last characteristic of the
experimentation implies a noticeable simplification in the way the contiput load
balance is solved. For instance, if a 10% computation load unbalance is acceptedythe w
the load is distributed can be implemented independently of the problem size that should be
solved in each computer, and thus, a tuning parameter is eliminated ortahkeaariation

range is remarkably diminished.

B.4.4 Bigger Matrices in Computers with the Highest Computing
Power

Many of the intensive computing applications normally tend to take up a large quahtity
memory (processing of large volumes of data). On the other hand, it is also ectbat
the applications will take advantage of all (or most of) the computers' resources,
particular the main available memory. This is why experiments werédaout in order to
characterize machines performance when the problem to be solved takes upradhtlogy
and even when the requirements are higher than the main installed memormyrapdters
have to recur to the use of the configured swap space.

The machines chosen to carry out these experiments were those with high@sttiogm
power of each network, i.aurmamarca (Pentium Il 400 MHz, 64 MB) of CeTAD and
Iqt_07 (Pentium Ill 1 GHz, 512 MB) of LQT. Experiments were designed with two
purposes, using fully optimized code:
Characterization of the performance for the biggest size of problem that can be
contained by the main memory.
Characterization of the performance for the biggest size of problem that cemi\mszl
(including swap memory space).

Fig. B.13 shows the performance ptirmamarca for different matrix sizes, including
those implying the use of swap memory during the processing of the matrix muatiphc

C = AxB. From matrices of ordem = 1600 inclusive, the proportion of approximate main
memory that is required to contain all the problem data is shown. For exampieatdces

of ordern = 1900, the 65% (approximately) of the main memory is used to contain matrix
data.

Fig. B.13 also shows the highest value forfor which all the data can reside in main

memory 6 = 2000) without recurring to swap memory during computations. That is, from
n = 2200 the computing must recurring to swapping memory pages in order to solve the
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problem. In this way the performance decrease for values ©f2200, 2400, 3000, and
3200 with respect to the performance obtained with2000 is explained.
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Figure B.13: Mflop/s irpurmamar ca.

Fig. B.14 shows the performancelgt_07 for different matrix sizes that are multiplied. It
also shows the biggest size that can be completely contained in main mém$000)

and, fromn = 4000 inclusive, the approximate proportion of necessary main memory to
contain all the problem data.
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Figure B.14: Mflop/s inqt_07.

In both computers the performance follows the same tendency: it increasegheith
increment of the problem data quantity while the main memory is capable of contaihing
the data to be processed, and it decreases as a higher proportion of swap sgesg i$n
used. However, variations ligqt_07 are lesser, both in relation to the increase and decrease
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of performance. The most significant fact might be that the performance does neaskec
as much as irpurmamarca from the use of swap memory during computations. Even
though the speed of the disks used may be quite influencing, it is more likely thatahe t
characteristics will be combined in order to keep the performance rdiahigh in Igt_07
though swap memory space is used. Both

the size of matrices, and

the block processing
are combined in such a way that, on the one hand, the quantity of floating point operations
is much higher because matrices are bigger and because the processingnetsirare
O(n®), and on the other, block processing makes each data in main memory to be used to
the maximum and thus the page faults frequency implying the page swapping from
memory to disk is reduced.

B.5 LIDI Computers Performance

Fig. B.15 shows LIDI (homogeneous) computer performance depending on the code
optimization level for matrix multiplication of orden = 100, 200, 400, 800 and 1600.
Code performance without any type of optimization is shown as "No opt.", code
performance optimized by the compiler is referred to as "Comp." and the program
performance optimized at source code level for matrices multiplication is stsotkalH.
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Figure B.15: Performance in Mflop/s Depending on Optimization in LIDI.

In fact, Fig. B.15 summarizes what happens in the rest of the computers of CamdD
LQT, though with the very absolute value of LIDI computers. The worst performance i
that corresponding to the code without any kind of optimization and, in the best of the
cases, is of slightly more than 50 Mflop/s. From the point of view of performahes;dade
optimized by the compiler is approximately three times better than the noninptirnode.

In other words, with the code optimized by the compiler, the same computer solves the
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same problem in a third of the time required with the non-optimized code. The
performance with both the non-optimized code and the complier optimized depend on the
problem size and is considerably reduced as the amount of data to be processegsncrea
The code fully optimized is even better in terms of performance than the campile
optimized and is quite independent of the size of problem, with variations that do not
overpass the 10%. In addition, as the size of problem increases, the performaresencr

as well, all of which is a considerable advantage with respect to the cod®uwit
optimization and the compiler optimized code.

Fig. B. 16 shows the performance with fully optimized code of LIDI computers for
different sizes of matrices that are being multiplied. Like for the compuwtétts higher
computing power of CeTAD and LQT, the biggest size that can be completely cedte
main memory Ii = 2000) is shown as well as, from= 1600 inclusive, the approximate
proportion of main memory necessary to contain all the problem data.
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Figure B.16: Mflop/s in the Computers of LIDI.

Beyond the differences in absolute values, the performance variations of LI[puters is
similar to the variation of the machine with highest computing capacity of ALeT
purmamar ca, which Fig. B.13 shows. In fact, the large decrease of performance as swap
memory is more frequently used is similar.

B.6 Conclusions

From the experimentations carried out, we do not only count with the precise parfoem
values related to
The resolution of the elemental operation of matrix multiplication in eammputer,
necessary to implement the computation load balance for parallel computing;
The performance values to use individual performance metrics of each computehof ea
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local network, and also to be used in tBpeedupcomputation obtained with the
resolution in parallel.

But also the code to be used in each computer should be completely optimizeddastat |

two reasons:

1. Performance is several times better, which improves the total runningthateis
required significantly (proportionally). Sequential performance not only is trfocidne
effective computers. use (to their maximum capacity) but also highly irapofor the
correct computation of speedup values that are obtained with parallel processing.

2. The computers' speed relation is independent (or with slight variations) ofzénefs
problem to be solved, which highly simplifies the way in which the computational loa
balance is solved.
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