
Appendix C: Communications in the
CeTAD Local Area Network

Interconnection networks are an essential part in parallel computer architectures. In fact, a large
part of the parallel computing bibliography is dedicated to this subject matter.This is relevant
from two points of view highly related to parallel applications; flexibility and performance. In
addition, the higher the interconnection network's flexibility and performance, the higher will be
the hardware cost, and the increase in this cost is usually rather more linearthan the increase in the
number of processors of the parallel machine.

In the particular case of parallel matrix multiplications analyzed in the experimentation, the
interconnection network is of utmost importance. Performance indexes show that mostof the
running time of the matrix multiplication in parallel is spent for data transmission. Given the
impact that the low communication performance has over the total performance of theparallel
application, it is necessary to count with a precise way of characterizingthe interconnection
network performance in order to make the necessary decisions for the optimization of the whole
application performance.

This Appendix is mainly dedicated to the characterization of the interconnection network
performance of the CeTAD local area network. The results of a set of really simple experiments
that allow evaluating the network quite precisely are developed and shown. Eventhough the
message-passing library used is PVM (Parallel Virtual Machine), some of the performance
characteristics common to most (if notall) message passing libraries implemented for local area
networks are also presented, such as implementations of MPI (Message Passing Interface). It is
important to notice from the very beginning the user-level process poitn oif viewfor the
communication performance, since it can be really far from the values defined by (or available at)
the interconection/communication hardware.

Although a quite large set of point-to-point communication performance results (between two
processes running in different machines) are presented in PVM, broadcast message performance
results are also presented. In fact, just as the parallel matrix multiplication algorithm has been
designed, it is the broadcast message performance the one which affects the final performance of
the matrix multiplication parallel processing. Eventually, the performance characteristics are given
in LQT and LIDI local networks, in which similar experiments have been carried out; some
comments on the most remarkable performance differences in these networks are presented, as
well as the reasons for these differences.

Appendix C: Communications in the CeTAD Local Area Network

C.1 Introduction

LThe processor interconnection network is fundamental in parallel computers. Inthe case
of parallel computers with (or based on) shared physical memory, this interconnection
network can be clearly identified not in terms of processors' interconnectionamong each
other but in terms of processors interconnected with the memory. In other words, in these
computers, removing processors interconnection network with the (only) memory would
mean eliminating completely the possibility of running applications. On the otherhand, if a
processors' interconnection network is removed from a parallel computer with distributed
memory, it stops being a parallel computer and turns into a set of separate computers or
modules of CPU-Memory, without the capacity of cooperating for the solution of a
problem. Since computer networks used for parallel computing clearly belong to the
MIMD type of distributed memory, we will keep on considering the interconnection
network for the data transmission among processors (or computers, directly).

As regards the processor interconnection network flexibility, the problem is notonly to
find a way of delivering data among processors, but also obtain the maximum of
simultaneous communications. The typical examples in this sense are focused onthe
capacity or not of communicating at the same time all the possible processor pairs, or
delivering information from one processor to the remaining in a single step (or in a number
of steps independent of the number of interconnected processors).

The flexibility of an interconnection network will define the easiness (or not)of user
applications to solve a communication among their processes. The fact that eachprocessor
will be in charge of running one or more processes to be communicated to other processes
assigned to other processor/s should never be overlooked.

The view of the interconnection network performance is directly related to thedata transfer
time among processors of a parallel computer. This performance view is not necessary
disjointed from that of flexibility. In fact, the greater the number of simultaneous data
transfers among pairs of processors, the greater will also be the capability or quantity of
data transferable by an interconnection network per time unit.

Even though this idea ofbandwidth (transfer rate) or data quantity per time unit is
important, another relevant performance index is the minimum communication time
between two processors, or startup, or also called communication latency among
processors.

In terms of costs, there is an invariant relation through the different possibilities of
interconnection networks: the higher the flexibility and/or performance of the
interconnection network, the higher will also be the cost. The cost increase varies
according to the interconnection network used, but in many of the cases increasing the
number of processors of the parallel computer implies a more than linear increaseof the
processor network cost. In the particular case of the installed computer networks, the cost
is zero (in general, worthless), since they are already interconnected.

The main drawback of computer interconnection networks in terms of performance isthat

224

Appendix C: Communications in the CeTAD Local Area Network

they were not designed for parallel computing. In this sense, the local network performance
is placed several orders of magnitude belowtraditional parallel computers interconnection
networks. That is why it is really important to evaluate their performance from the point of
view of user processes that make up the parallel application.

POn the other hand, the interconnection network performance has a direct relation to the
performance and granularity of parallel applications that can be run over a computer. Every
communication time tends to degrade the total running time of a parallel application, unless
we count with, and use to the utmost, the capacity of overlapping computing time with
communications. From the granularity point of view, if the communication time to obtain a
result in processor P1 is equal to or greater than the computing time necessary to compute
it, then the most reasonable is to obtain it locally (in P1), saving time and / or complexity of
the application.

C.2 Ethernet Networks

In the particular context of installed computer networks, local area networks,or LAN, the
most used interconnection network is that defined by the standard protocol 802.3. This
standard is also known as 10 Mb/s Ethernet network, due to its 106 bits per second
transmission capability. The characteristics of this interconnection network are very well
defined and known, in terms of hardware and of the characteristics of its flexibility and
performance.

In addition, most of the 10 Mb/s Ethernet network characteristics are similar to those of the
100 Mb/s Ethernet network, in which only the parameters/indexes referring to performance
or communication capacity are changed. This similarity is exemplified in, and also taken
by, many of the communication hardware companies in charge of commercializing NICs
(network interfase cards) which count with both communication capacities andreferred to
as of 10/100 Mb/s.

Fig. C.1 schematically shows the basic logic way in which workstations areconnected in a
local network using Ethernet. It can be easily noticed that it is of bus type, where the main
characteristics of each data transfer are the following:
• There are no priorities nor the medium access time is predictable.
• It has a single sender.
• It occupies the only communication channel.
• It can have multiple receivers.
• The medium access mode is CSMA/CD (Carrier Sense, Multiple Access / Collision

Detect).

The first two characteristics clearly imply that there should not be more than one
simultaneous data transfer because, in fact, there is only one communication channel
shared by all computers. The last mentioned characteristic makes the implementation of the
broadcast and/ormulticast type communications really natural, where a message is sent
from a computer and received by the remaining or by a subset of the remaining computers

225

Appendix C: Communications in the CeTAD Local Area Network

of the network, respectively.

Figure C.1: Ethernet Network.

In most of the installations, the initially adopted communication hardware has been based
on coaxial cable, with which the physical topology is equal to the logical topologyof Fig.
C.1.

Gradually, the wiring rules used in most of the installations have been changed into the use
of twisted pair cable with hubs (basically, communication concentrators and repeaters) and
with communication switches, which count with the facility of isolating point-to-point
communications. This isolation in switches is produced when the hardware detects a point-
to-point data transmission between two of the computers interconnected by a switch. Also,
several combinations of hubs and switches are possible, with the objective of keeping
certain performance as the data traffic increases, and also reducing thecost by avoiding the
massive use of communication switches.

These communication networks are important not only due to the number of installations
currently working, but also due to the fact that they are clearly less expensive than the rest
of the commercialized alternatives. They are less expensive in terms ofthe necessary
hardware (cards, connectors, and wiring) and also in terms of installation:from workforce
(technicians) to hardware acknowledgement and hardware starting up on the part ofthe
operating system. All of this necessarily reduces installation and maintenance costs of
Ethernet networks.

Cost reduction in relation to the other computer interconnection alternatives implies certain
guideline in the Ethernet network maintenance as well as in the installationof new
networks with this hardware. We should take into account that the cost may include aspects
such as: network cards in each computer, wiring (it may include hubs and/or switches in
the case of Ethernet networks), installation, maintenance and technical trained personal.

C.3 Performance Evaluation

Communication time (used in general to characterize the performance of an
interconnection network) between two processors is generally characterized with [7] [11]

226

� ��

Appendix C: Communications in the CeTAD Local Area Network

t(n) = α + βn C.1

where
• n is the transferred data unit to be measured (bit, byte, a simple precision floating point

number representation, etc.).
• α is the time necessary to establish a communication between the two processors, which

is usually called communication latency time. It basically consists of the minimum time
that each communication between two processors will spend independently of the
quantity of transferred data. Normally, it is given by the communication hardware and
can be estimated with the time used to transfer a data unit or, when possible, a message
without data.

• β is the inverse value of the asymptotic bandwidth or data transfer rate of the
interconection network, i.e. 1/β is the asymptotic bandwidth. Normally, the
communication network data transfer rate is given by the amount of data (bits, bytes,
etc.), per time unit that can be transferred between two processors. Generally, it has a
minimum limit given by the communication hardware plus the time used up by
processes and/or function of the communication hardware.

t(n) = α + βn C.1

where

Even though the communication hardware, or processor interconnection network, has well
defined values for parametersα andβ, the user process usually obtains worse values from
the point of view of the processor interconnection network performance than those given
by the hardware. Both the latency time and the time necessary to transmit each data unit are
affected (and, thus, they increase) when all the communication layers necessary to make a
user process message running over a processor reach another user process running in other
processor take part in the transference.

It is also really difficult to make ana priori estimate of the overload that communication
libraries - with the available users (processes), the operating system interface with the user
and / or with the previously mentioned libraries, and communication protocols - impose on
communications that are carried out physically over the communication medium being
used. For this reason, experimental methods for measuringα andβ real parameters, which
user applications will find with respect to the parallel computer interconnection network,
are quite often used.

EIn the specific context of computer networks, and with the possibility of heterogeneous
hardware, this overload becomes more important when the processor interconnection
network performance is to be evaluated. In the case of traditional parallel computers, the
computation of realα andβ is often easier and with more final values (what user parallel
application processes obtain) closer to those of the hardware because, from the
communication hardware to the interface used by user applications, everything is oriented
to making parallel computation.

It is really difficult to precisely quantify the relation of local networkswith traditional

227

Appendix C: Communications in the CeTAD Local Area Network

parallel computer interconnection networks in terms of the mentioned performance
indexes. What is generally accepted is that the worst relation is given in relation to the
initialization time of messages to be communicated between two processes. Moreover, in
the context of heterogeneous local networks, communication initialization timeusually
depends on the computers used because the operating system call times are involved as
well as their further overload in terms of the used protocol (orprotocol stack) maintenance
and management. At a level closer to hardware, the times of
• memory access,
• DMA (Direct Memory Access) channel initialization-use, if used, and
• the related interruptions management and / or interface with the network card of each

computer to be communicated
are also involved.

Summing up, local network performance is lower than that of the interconnection
processor networks of a traditional parallel machine from several points of view:
• Latency and bandwidth.
• Overlapping capacity.
• Latency heterogeneity depending on the machines heterogeneity.

C.4 Evaluation with the Ping-Pong Method

In the context of parallel computers with MIMD-base architecture, the experimental
method for assessing the performance of the processors’ interconnection network, ormore
specifically the real values of parameters and , has been that ofping-pong messages. The
method is really simple in itself, since, in order to evaluate the communication time
between two processors P1 and P2, the steps described in Fig. C.2 are to be followed:

Figure C.2: Pingpong Processes.

1. Send a message from processor P1 to processor P2.
2. Send the received message in processor P2 to processor P1, once again
3. In processor P1, the total time used for the communication of both messages is known

and, thus, this time is divided by two, achieving the message communication time in one
of the directions.

One of the most attractive characteristics of this method, apart from its simplicity, consists
in that it does not need the synchronization of none of the processors involved in the data
transference so as to obtain a reliable data communication time. Otherwise, we should

228

Ping Pong
1

2

Appendix C: Communications in the CeTAD Local Area Network

know the sending time of the message from processor P1 to processor P2, the reception time
of the message to processor P2, and processors should be synchronized with respect to a
common time reference.

Another advantage of this method consists in the independency of the means by which
messages are communicated between processes. The time spent in sending andreceiving
the same message in P1 (communicating with P1) can be taken independently of the way the
message is transmitted. In fact, it is possible to analyze different available communication
alternatives between processors in order to choose the most convenient.

On the other hand, one of the constraints as regards reliability of this method liesin the fact
that the communication time between processors must not vary according to thedirection
of the communication, i.e. there exists certainsymmetry of communications between
processors. In the previous listing, it is assumed that the time used to send amessage from
P1 to P2 is the same as that of sending the same message from P2 to P1. Anyway, this
situation is, without doubts, what usually happens in the fields of interconnection networks
in general.

Another simplification of thepingpong method consists in masking, or better, disregarding
the possibility of making the transmission and reception of data simultaneously (full duplex
communication), or the possibility of overlapping computation with communication that
can be used up by applications. In both cases, i.e. with the available hardware for making
one or both things, having the point-to-point communications performance it is possible to
reach the communication performance values that applications may obtain.

In the specific case of computer networks, the user normally does not usually have too
much control (or no control) over the utilization or not of the hardware facilities. In
consequence, the performance values obtained by the pingpong method will be the closest
to what user (parallel) applications can obtain.

C.5 Different Ways of Message Transmission with
PVM

Since it is necessary to characterize the communication time between processes of a
parallel program, which are communicated using the communication routines provided by
PVM, it is necessary to explore all the possible alternatives in terms ofthe attainable
performance with these routines for user applications.

With the pingpong method previously explained, we can evaluate quite fast which the
attainable performance in communications is between processes assigned todifferent
processors of the (virtual) parallel machine. In addition, since we count with the values
related to the performance of the communication network (α andβ) of the communication
hardware, we can certainly know the overload time degree, since PVM is used to
communicate tasks.

229

Appendix C: Communications in the CeTAD Local Area Network

When performance of communications taking into account not only the hardware but also
the communication software (basically, the involved operating system processes plus PVM
communication routines) has to be evaluated, it is necessary to explore the different
communication alternatives to transfer data between the parallel application processes.

In general, PVM counts with two levels of flexibility when data are to be transferred
among processes: data codification and “routing” (in PVM terminology) of messages. Data
codification is related to the representation of the information made in each processor
(computer) and the message routing is related to the way data are transferred between
parallel application processes using the physical communication network and PVM
communication routines/processes. In the following subsections, we present the details of
the alternatives for the encoding and routing in PVM. In the particular case of the
codification, we will also describe an alternative to the classical ways used both in PVM
and in MPI, which will be called Direct Translation of Data Representation.

It is necessary to make clear that, even though this description is typicalof PVM, both in
MPI and in any other library used to parallel computing in computer networks, it will be
necessary to define both the way in which the different data representations are matched
and the way in which data are transferred over a computer interconnection network.

C.5.1 Message Data Coding in PVM

Data codification should be basically chosen from what in PVM is called:
a) PvmDataDefault: it is used when the communicated processes are assigned to

processors with different architectures or when the application does not have any
knowledge of the processors (computers) architecture over which it is run. Data tobe
transferred between processes are codified in XDR format before being sent; then, they
are copied to a memory area from which PVM routines will send (buffer) information
and then they will be decoded (from the XDR format) when they are received, before
being used by the receptor process.

b) PvmDataRaw: it is used when the architecture of the parallel machine is homogeneous,
be it a computer network or a multiprocessor. Data transferred between processes are
not codified at all, they are only copied to the PVM buffers before making the delivery
via the communication networks.

c) PvmDataInPlace: this alternative is similar toPvmDataRaw, but without a copy of
user’s data into buffers. There is no data codification, nor extra memory costsdue to
data communication, nor data copying time; however, the user must assure that data will
not be changed from the call of the sending routine until data are efficiently sent tothe
target process.

Fig. C.3 shows the three types of encoding and their relation to the codification and
memory used for sending data from process P1 assigned to a processor and process P2

assigned to other. When the a)PvmDataDefault encoding is used, data are copied from the
user’s process data area P1 to the area of PVM buffers and codified in format XDR [10] in
step 1. Then, these codified data are sent to the target processor (which the receptor process
P2 is assigned to), using the interconnection network, in which they are receivedover
another area of PVM buffers. In step 2, data located in PVM buffers are decodedand

230

Appendix C: Communications in the CeTAD Local Area Network

copied to the data area of the receptor processor P2.

When the b)PvmDataRaw encoding is used, the process is the same, with the exception of
not using any type of encoding for the data that are being sent. The bytes sequence of the
data area of process P1 reaches process P2. With this method we save buffers memory used
for the XDR codification, and we also avoid using the CPU involved by such codification;
however, the copies and buffers are used in the same way as in the case of using the
PvmDataDefault codification.

When the c)PvmDataInPlace encoding is used, we not only avoid what is implied in the
XDR encoding (processing and associated memory) but also all the memory necessary to
store the message in the origin processor of the communication. In the case of Fig. C.3,
data are sent in the first step from the user process P1, which sends the message to the
processor which the receptor process P2 is assigned to, where it is stored in PVM buffers.
In other words, output PVM buffers are no longer necessary for the message.

Figure C.3: Codification Alternatives in PVM.

In the examples of the performance evaluation of communications included in the PVM
distribution, the way in which data are codified isPvmDataRaw, with a comment
indicating that, in case there is heterogeneity in the parallel machine, we should change for
the PvmDataDefault encoding. In general, in computer networks, there is no option other
than codifying data (with the addition of the copies to PVM buffers) withPvmDataDefault
so that data do not loose their meaning when they are delivered to other process executed
over other processor (computer). When the used computer’s heterogeneity is accepted for
parallel computing, it is not possible to assume that the data representation inall computers
is homogeneous.

From the performance point of view, the most appropriate codification method is the
PvmDataInPlace. Flexibility loss due to the restriction as regards the impossibility of
modifying the sent data does not seem to entail a problem in the particular case of matrices
multiplication. Sent data (sub matrices of matrix B, in the operation A=BxC) are read-only

231

P
1

1

P
2

2

P
1

P
2

2

P
1

1

P
2

2

1

Datos de usuario

a) PvmDataDefault b) PvmDataRaw c) PvmDataInPlace

Datos codificados Datos no codificados

Appendix C: Communications in the CeTAD Local Area Network

for all the processes that use them. All the same, the data representation heterogeneity
problem persists.

All numerical applications depend, as regards data representation, on a quite reduced
quantity of data types which are generally predefined by the languages used (generally C or
FORTRAN). In general, two basic types can be identified, from which datastructures with
which we operate in applications (mostly vectors and matrices) are defined:single
precision and double precision floating point. For instance, the representation of complex
numbers, also necessary for a wide range of numerical applications, is definedin function
of a pair of single or double precision floating point numbers, according to the specific
application.

From the three types of encoding already explained, the general strategy used for
transferring data from a computer to another schematically is:

Figure C.4: Strategy of De/Coding of PVM/MPI.

That is, before transferring data from one station to the other, data are coded in order to
keep the information they represent. In this sense, both PVM and MPI are similar, if there
exists data codification to be delivered, this codification is carried out before doing the
transference.

In some way, this coding-transmission-decoding strategy can be considered conservative or
anticipatory to the communication, because it always works independently of the
communicated computers and is carried out before data are being delivered.

C.5.2 Direct Translation of Data Representation

One alternative to PVM’s (and MPI’s) anticipating feature of keeping the data consistency
between the different computers consists in delaying the de/coding so that:
• Data are not always sent without some type of previous encoding (neither to XDR nor to

any other format).
• Data are received as a bytes sequence in the receptor, together with a descriptor of the

data type they represent plus the type of origin architecture (type of origin
representation).

• If the processor in which the receptor process is located has a different data
representation from the processor in which the sent process is located, data are
“decoded”: the representation of origin data is changed so that it matches the target
representation.

232

Codify to a
known format

(XDR)

Coded data
tansmission

Decode to the
receivers'

format

Appendix C: Communications in the CeTAD Local Area Network

In consequence, there is no de/coding; rather, in the target processor, the communication
routines will be in charge of “translating” the data representation of a computer (from
which the message was sent) into the other (in which the message is received).

In the case of coding a known representation, there are two translations: that of the origin
representation (from which the message is sent) into the known representation, and then
from this into the target representation (where the message is received). In the case of
direct translation, there is only at least one, which changes from the origin data
representation to the target data representation when necessary.

Notice that the direct translation should be done in the target and not in the originof each
message, since in this way we avoid problems with the so-called collective
communications, such asmulticast and broadcast. In this type of communications, from
the same process in a processor, we can send data to multiple processes (which potentially
implies target processors), and thus there would not exist a unique and possible translating
technique.

Direct translation for user processes can be as transparent as XDR encoding used in PVM
and in (some implementations of) MPI. In the case of PVM, there are no drawbacks for its
implementation because each computer of the parallel machine counts with identification
functions as well as a means for identifying the location of each task (processor in which it
is run).

As regards the codification of data for their transmission, translation has the advantage of
minimizing the processing and memory used for each message on the side (processor) of
the sent process. In fact, the sending process takes the data from its memory, adds the data
descriptors (of how data are represented), and sends the message to the receptorprocess.
On the side (processor) of the receiving process, both memory and processing depend on
the complexity of the data translation. As it will be seen next, at least inthe particular
context of computer networks, the translation of representation is quite simple,and in
consequence the need of memory and processing is also reduced.

Going a step further in the analysis of number representations in the particularcontext of
computers, a surprising homogeneity is found as regards the acceptance of the standard
IEEE 754 [6] for the representation of floating point numbers. In all the computers to
which there is access and over which the experimentation was carried out, which includes
• PCs with Pentium processors (in some of its multiple versions), Celeron, and AMD

K6–II,
• Sun workstations with processors MicroSPARC-II,
• An IBM RS/6000 workstation, with processor PowerPC,
• the adopted floating-point representation (at the level of operations of the processor’s

floating point unit) is the same: IEEE 754 in both versions (single and double).

It is worth mentioning that the heterogeneity at the data representation levelcan be greater
in other environments, for instance, among different traditional parallel machines with
highly complex floating-point units. Independently of this, it should be recalled thatthe
tendency (even in the most powerful/expensive parallel machines) is to use standard
hardware. IBM SP2, for instance, are based on PwerPCs, and ASCI Red and Blue are

233

pvmd pvmd

P
1 P

2

pvmd pvmd

P
1 P

2

Appendix C: Communications in the CeTAD Local Area Network

based on Pentium Pro and MIPS R1x000 respectively.

Even when all computers adopt IEEE 754 as their floating point number representation,
this does not mean that, when sending a byte sequence from a computer to another, these
bytes will entail (represent) the same in both machines. Another hindrance is the way to
save bytes of a particular type of data (in the case under analysis: floating point numbers) in
memory. In this case, the “norms” followed are two, and, in fact, there does notexist many
alternatives to explore: first the most significant byte (usually called little endian in
literature), or first the least significant (big endian, in literature). It is clear that the
translation of a format into another is immediate and without large memory or processing
requirements.

From the last two paragraphs it is deduced that, as a minimum for the representation of
floating point numbers, the direct translation of data representations among computers is
advantageous in relation to codification, both in memory and processing requirements. It is
not hard to make a similar analysis with the other types of basic data (characters, integers,
etc) and arrive at the same conclusion. This is why the experimentation includesthis way
to “codify” data for the message transmission among pingpong processes.

C.5.3 Data Routing of a Message in PVM

Message routing in PVM refers to the way in which data of a message are transported
among user processes and the PVM process in itself (pvmd) in each computer. The two
most popular message routing ways among tasks are shown in Fig. C.5.

 a) PvmRouteDefault b) PvmRouteDirect

Figure C.5: Routing Basic Alternatives in PVM.

In the case of a)PvmRouteDefault, data are transferred among processespvmd over the
computer interconnection network using the UDP communication protocol (over IP).

In the case of b)PvmRouteDirect, data are directly transferred among the processes of the
parallel application over the computer interconnection network using TCP communication
protocol (also over IP). The general recommendation made in the PVM documentationis
that, in performance terms, option b) is the best.

234

Appendix C: Communications in the CeTAD Local Area Network

C.6 Different Ways of Message Transmission with
MPI

Since MPI is proposed as a standard library of message passing among processesof a
parallel application, option details such as encoding and routing (in the PVM sense) are not
available at user levels. In this sense, the creation of MPI is quite far from and independent
of computer networks and, in consequence, heterogeneity in data representation or inthe
alternative ways at communication protocols levels among processors do not have the
relevance acquired from the beginning in PVM, which was created for (heterogeneous)
computer networks. In terms of the possible implementations, it is highly demonstrated that
MPI is possible within the whole range of message passing parallel computers,be it
multiprocessors, multicomputers withad hoc interconnection networks for parallel
computing, or computer networks.

MPI implementations for computer networks generally assume that the data representation
is heterogeneous (in fact, there are no many alternatives) and IP connectivity. Theadvance
encoding method (with XDR, for instance) is usually used for solving the heterogeneity of
data representations. As usual, in the context of MPI, we should recall that the
implementation is in charge of making a decision of this kind, and, thus, different
implementations of MPI can have different ways of implementing it. Similarly, what in
PVM is referred to as routing (in reference to the way in which data of a message are sent
from the sending process to the receiving process), depends on the MPI implementation,
even though in most of the cases there is a tendency to use IP connectivity (at least those
free that can be obtained via Internet).

In any case, independently of the MPI implementation, be it for computer networks or any
other type of parallel computing architecture, there are no alternatives at user levels neither
over the encoding or message data routing. In MPI, we gain in transparency withrespect to
the implementation and the parallel architecture, and in the particular case of computer
networks, we perhaps lose performance if machines are homogeneous or if the previously
explained data type representation translation is used.

C.7 Initial Experimentation with PVM

The initial experimentation with PVM was carried out in order to obtain a computing base
of α andβ using the different ways of encoding and routing that can be selected in PVM at
user level. The machines with which the experimentation was carried out are detailed in
Appendix X: CeTAD computers, interconnected with a 10 Mb/s Ethernet network. Since
the computerscetadfomec1 andcetadfomec2 are exactly the same, the results are shown
for one of them (cetadfomec1), which is referred to as cf1.

The pingpong method was used locating processping always in the same computer and
measuring the times with processpong in each of the rest, each time. Even though the most
important to estimate (and thus, to measure) are parameters and , in the specific case of

235

Appendix C: Communications in the CeTAD Local Area Network

computer networks, the time necessary to solve the data representation heterogeneity
(de/coding or translation) might be useful. The computer chosen to locate process pingis
purmamarca, since it counts with the necessary memory quantity for all the message
lengths (64MB) and is the fastest of the CeTAD computers.

Measurements were carried out with the network free of interferences (without much traffic
in the network other than that generated by computers during the pingpong process), and
they were actually carried out on different days under the same conditions, obtaining the
same results.

According to what has already been explained, in heterogeneous computer networks, there
exist four alternatives for the management of messages among processes:
1. PvmRouteDefault Routing with PvmDataDefault Encoding, i.e. transmit codified data in

XDR format using process PVMD in each of the involved computers.
2. PvmRouteDefault Routing without codification, but with data representation translation,

i.e. translating the representation whenever necessary in the target process and using
process pvmd in each of the involved computers.

3. PvmRouteDirect Routing with PvmDataDefault Encoding, i.e. transmitting codified data
in format XDR directly among pingpong tasks.

4. PvmRouteDirect Routing without codification but with translation of data
representation, i.e. translating the representation whenever necessary inthe target
process and with the data transferred directly among pingpong tasks.

Since it is difficult to find a set of message lengths representing all thepossibilities of
applications and parallelization, the chosen lengths cover a wide range: from messages of
eight bytes (the necessary for two single precision floating point numbers or one double
precision) up to messages of 107 bytes. The intermediate lengths are 102, 103, 6 x 104, 106

and 107. The particular case of length 6 x 104 (which does not follow the “logarithmical
convention” of the increase in message length) was chosen in order to then comparethe
results with thepingpong version of the operating system (in particular, Linux): theping
command, whose utilization is justified in the next section. Since length 6 x104 is really
too close to 105 to contribute with significant data, it was not included in the results.

For more information and clarification of the data obtained, the results will bepresented in
two formats:
1. Total communication time for the pingpong. This alternative is in turn presented in

logarithmical format of the times, given the chosen message lengths.
2. Bandwidth or bytes/second, for a better idea of the performance relation between what is

obtained at user level with PVM and the hardware (10 Mb/s Ethernet).

C.7.1 Performance with Routing Between pvmds and Codification

It is assumed that this alternative is the least convenient as regards the performance of the
computer interconnection network, and the results obtained in terms of communication
(pingpong) times are shown in Fig. C.6. It can be clearly seen that the communication
latency time in PVM among processes varies between 1 and 10 ms depending on the
computer, since these values repeat themselves in spite of the fact that message lengths

236

Appendix C: Communications in the CeTAD Local Area Network

vary between 8 and 1000 bytes (two orders of magnitude, in terms of growth).

Figure C.6: Times with Routing and Encoding PvmDefault.

The logarithmical time scale of Fig. C.6 masks, in some way, the differences among
computers, though we can see that, for all the lengths, there are different communication
times for the different machines involved.

Fig. C.7 shows the same results, but in function of MB/s (megabytes per second),i.e. the
quantity of information (220 bytes) per time unit. Both in this figure and the following ones
expressed in terms of MB/s, the relative differences among computers canbe clearly seen,
as well as the relation to the hardware capacity. In the particular caseof this figure, what
was expected can be proved for all the computers: the larger the message length, the higher
the performance.

Figure C.6: MB/s with Routing and Encoding PvmDefault.

237

8 100 1000 6x10^4 10^6 10^7

0

1

10

100

1000

10000

100000

prited cetad Josrap tilcara cf1 fourier paris sofia

Cantidad de bytes

lo
g(

t(
m

s)
)

8 100 1000 6x10^4 10^6 10^7

0

0,2

0,4

0,6

0,8

1

prited cetad Josrap tilcara cf1 fourier paris sofia

Cantidad de bytes

M
B

/s

Number of Bytes

Number of Bytes

Appendix C: Communications in the CeTAD Local Area Network

In the particular case oftilcara and cf1 there seems to be an abnormal behavior for
messages of 107 bytes, but this can be explained in function of their 32 MB main memory
sizes. This size is not big enough for the message, plus PVM buffers, plus the rest of the
processes (pvmd, operating system, etc.) and their memory requirements. In both cases we
have to recur to theswap space (handled by the operating system), and in both cases this
also produces a remarkable degradation at the level of the performance of user processes.
In a certain way,prited has also the same problem (loss of performance due to its 32MB of
main memory), but the relative loss is much lesser since in no case it exceeds 0.5 MB/s.
The rest of the computers have a main memory of 64 MB or more and, thus, there is no
need to recur to the swap space.

Also, from Fig. C.7:
• There are clear performance differences among the different computers, between

slightly more than 0.4 MB and slightly more 0.8 MB/s.
• The best obtained is slightly more than 0.8 MB/s for three of the computers (taking into

account cetadfomec2, represented by cf1)
• The best performance obtained for each of the computers is accomplished with message

length of order of 104 bytes or more (represented with 6x104, in the figure).

C.7.2 Performance with Routing Between pvmds and
Representation Translation

Fig. C.8 shows the results obtained in terms of communication absolute times.
Comparatively with those shown in Fig. C.6, the results of this alternative are similar in
general terms: latency and absolute times, all of which gives us an idea of the relatively low
importance of the way data are coded (or the representation translation, in this case).

Figure C.8: Times with PvmDefault Routing and Translation of Data Representation.

Fig. C.9 shows the same results but in function of the MB/s according to the

238

8 100 1000 6x10^4 10^6 10^7

1

10

100

1000

10000

100000

prited cetad Josrap tilcara cf1 fourier paris sofia

Cantidad de bytes

lo
g(

t(
m

s)
)

Number of Bytes

Appendix C: Communications in the CeTAD Local Area Network

communication times and the quantity of bytes transmitted in relation to themessage
length. It can be noted that the decrease in the memory requirements make the 32 MB
machines (tilcara, for instance) performance not fall so drastically when messages are of
107 bytes, because they make lesser use of theswap space and, thus, the impact on the
memory handling speed is smaller.

In addition, it can be observed that, as direct impact of the representation translation,
performance of machines communicating the same data representation can be evenbetter.
Since processping is always assigned to a PC with Linux (purmamarca), the performance
is better with the rest of the PCs (tilcara, fourier and cf1), in comparison with the previous
alternative.

Figure C.9: MB/s with PvmDefault Routing and Translation of Data Representation.

Perhaps, the most significant point in both cases (XDR codification and representation
translation, which is the only thing that has varied until now) is the really low performance
of computersofia, which does not reach 0.6 MB/s in any case. This low performance is
stressed when it is compared to computers whose relative processing speeds are several
times slower, like computers prited, cetad and paris.

C.7.3 Performance with Routing Between User Tasks and
Codification

Fig. C.10 shows the communication times obtained when user tasks communicate directly
using the TCP protocol, and with XDR (PvmDataDefault) data encoding. This alternative
of message transmission is what the PVM documentation recommends when computers
(and their ways of representing data) are heterogeneous.

239

8 100 1000 6x10^4 10^6 10^7

0

0,2

0,4

0,6

0,8

1

prited cetad Josrap tilcara cf1 fourier paris sofia

Cantidad de bytes

M
B

/s

Number of Bytes

Appendix C: Communications in the CeTAD Local Area Network

Figure C.10: Times with Routing among Tasks, and PvmDefault Encoding.

Comparing the results of Fig. C.10 to the previous, there are some slight differences, such
as:
• the latency time is lesser (closer to 1ms than to 10ms),
• in logarithmical scale, for small message times (up to 1000 bytes), computers do not

present significant differences. Once again, it should be noticed that the logarithmical
scale masks many differences that can be then clearly visualized in terms of MB/s.

Surprisingly, Fig. C.10 shows the excessive communication time for messages greater than
1000 bytes inprited and insofia. Even in logarithmical scale, the difference is remarkable,
and it is really interesting that, in principle, it appears with two unrelated computers (in
terms of design) in terms of software or hardware;prited and sofia: one a Sun
SPARCStation 2 from the beginnings of the '90s and the other, an IBM RS/6000 from the
end of such decade.

The last of the listed conclusions has too much relevance, since it thoroughly contradicts
the documentation and reports related to PVM. In this sense, the PVM installation, the
pingpong programs, and the potential reasons for which this might have happened were
verified, though no significant reason was found in relation to the PVM library.

Similar tests of TCP connections between computerspurmamarca and sofia showed a
similar performance at user process level. This implies that PVM communication routines
show nothing but what occurs at connection level between computers. The similarity (in
terms of communication performance) between computerssofia and prited makes us
assume the same behavior at TCP connection level.

Fig. C11 shows the same results but in function of MB/s. Now the differences among
computers can be more clearly seen, specially with message lengths greater than 1000
bytes.

240

8 100 1000 6x10^4 10^6 10^7

0

1

10

100

1000

10000

100000

1000000

prited cetad Josrap tilcara cf1 fourier paris sofia

Cantidad de bytes

lo
g(

t(
m

s)
)

Number of Bytes

Appendix C: Communications in the CeTAD Local Area Network

Figure C.11: MB/s with Routing among Tasks, and PvmDefault Encoding

C.7.4 Performance with Routing Between User Tasks and
Representation Translation

Fig. C.12 shows the communication times obtained for the Routing of tasks (TCP) and
with data representation translation.

Figure C.12: Times with Routing among Tasks and Translation of Representation.

Fig. C.13 shows the same results in function of MB/s obtained among user tasks
communicated to the PVM functions, except as regards the translation of data
representation, which is independent of PVM.

241

8 100 1000 6x10^4 10^6 10^7

0

0,2

0,4

0,6

0,8

1

prited cetad Josrap tilcara cf1 fourier paris sofia

Cantidad de bytes

M
B

/s

8 100 1000 6x10^4 10^6 10^7

1

10

100

1000

10000

100000

1000000

prited cetad Josrap tilcara cf1 fourier paris sofia

Cantidad de bytes

lo
g(

t(
m

s)
)

Number of Bytes

Number of Bytes

Appendix C: Communications in the CeTAD Local Area Network

Figure C.13: MB/s with Routing among Tasks and Translation of Representation.

With this alternative, and for the first time, 1 MB/s of bandwidth is outperformed for
communications among computers with the same data representation. Bothpurmamarca,
where process ping is always allocated, and Josrap, tilcara, fourier and cetadfomec1 (and
cetadfomec2) are PCs (though with different processors) with Linux operating system. On
the other hand, messages can be sent with PvmDataInPlace, which implies no copy in
buffers, nor codification that may increase the final size of data to be transmitted over the
computer interconnection network.

The information given by these figures is very similar to what the two previousshow (Fig.
C.10 and Fig. C.11), both in absolute values and the relation existing among computers. It
also shows (and, in this sense, proves in some way the previous results) the greatdifference
in performance existing between the computers prited and sofia with respect to the rest.

The very low performance ofprited andsofia with this communication alternative (TCP
routing of tasks and translation of representation), among PVM tasks, makes it possible to
definitively discard that the problem might be codification. On the other hand, the problem
seems to be the TCP communications and/or PVM communications with TCP routing.

C.7.5 PVM Experimentation Conclusions

If it is expected communications to the maximum possible performance, computersofia
should be specifically analyzed, since it should have a much higher communication
performance. In the particular case of messages with direct routing, the performance
obtained is actually much lower than the expectable and, thus, it is possible to find an error
in the way TCP communications are handled in the operating system or in terms ofsome
computers’ TCP connection configuration (at operating system level). In thissense, the
experimentation did nothing but show that there might be a (serious) problem in the
performance due to a software problem.

242

8 100 1000 6x10^4 10^6 10^7

0

0,2

0,4

0,6

0,8

1

1,2

prited cetad Josrap tilcara cf1 fourier paris sofia

Cantidad de bytes

M
B

/s

Number of Bytes

Appendix C: Communications in the CeTAD Local Area Network

In addition, in the context of the performance, it is interesting to recall that all the
computers have the same performance as regards communication hardware. This means
that all the computers, independently of the manufacturer, have Ethernet 802.3 interface
(NIC), and thus they all would be capable of communicating at 10 Mb/s, which implies in
theory 1.25 MB/s (1.25 x 220 bytes per second). We can suspect certain sustained
performance loss given by the overhead imposed by the operating system and its buffers,
processes, etc., plus all related to PVM in itself; however, we do not count with ana priori
quantified idea of the performance loss implied by all of this overhead. In consequence,
knowing the maximum possible performance of communications for user tasks may always
remain pending if the performance is only monitored with the pingpong method with tasks
using PVM.

Going back to the initial objective ofα and β value estimation, there are some very
important conclusions: the range of the values and the heterogeneity of the values.
• Depending on the message communication alternative chosen, latency varies between 1

and 10 ms.
• Also depending on the chosen alternative (and excluding the particular cases ofprited

and sofia), the data transference rate (or bandwidth) ranges from little less than 0.5
MB/s and little more than 1 MB/s.

• Whatever the chosen alternative is, both the latency and the transfer rate depend on the
computer.

The latter conclusion is quite discouraging because a subsystem, which is homogeneous in
theory like that of the computers’ interconnection, “becomes” heterogeneous when it is
regarded from the point of view of user tasks which make up a parallel application.

The immediate consequence of communication time heterogeneity in Ethernet networks
with PVM is: a message that should reach any process in other processor in thesame
period of time, it will now reach it in a period of time which depends on the originand
target processors, beyond the solution adopted to solve differences in data representations.

In order to prove the results obtained with PVM, a new set of experiments is designed to
improve precision as regards:
• α and β for user processes;
• heterogeneity, or not, of communications;
• the particular cases of low performance of prited and sofia.

C.8 Experimentation with the Linux ping Command

The ping command (at least in its version of Linux operating system) is versatile enough to:
• Measure communication times at user application levels.
• Generate “messages” of different lengths.

In fact, any user without special permission can run theping command, which generates a
user process that produces apingpong package per second at ICMP (Internet Control

243

Appendix C: Communications in the CeTAD Local Area Network

Management Protocol) protocol level. The package round-trip time is reported by theping
command itself, reason why no instrumentation is added. The pingpong package length can
be varied using a command option, and this in turn allows us to watch the interconnection
network performance in function of the quantity of transferred data, considering the
pingpong package as a message.

Fig. C.14 shows the communication times involved for different number of bytes
containing the pingpong packages.

Figure C.14: Linux ping Times.

It is necessary to make some explanations as regards the pingpong packages lengths as well
as the last identifier appearing as “3/6 x 10^4”. The whole ICMP package must be smaller
than 64 KB, like IP packages, and thus what can be measured with the ping command
reaches this transferred byte quantity.

In the particular case of computers with Sun 4.1.x (BSD-based Sun OS) operating system,
prited andcetad - for some reason undocumented -, do not work on ICMP of more than
32 KB and thus, with these computers, pinpongs were carried out with a maximum size of
30000 bytes (then multiplying the time by two in order to equalize them with the times of
the rest of the computers).

From the information gathered in Fig. C.14:
• The messages latency time (α) for user tasks (which communicate themselves with the

ICMP protocol) is of order 1ms. Like in PVM, the latency time depends on the
computers, though the variation range is quite smaller.

• Just after messages of 1000 bytes or more, time starts to be proportional to the data
quantity transferred. This means, within this context, that up to that “message” length
(in this case, pingpong packages), the latency times is large enough to be greater than
the data transmission time.

Fig. C.15 shows the same results but in terms of MB/s ofpingpong package data

244

10 100 1000 3/6 x 10^4

0

1

10

100

1000

prited cetad Josrap tilcara cf1 fourier paris sofia

Cantidad de bytes

lo
g(

t(
m

s)
)

Number of Bytes

Appendix C: Communications in the CeTAD Local Area Network

transference. We can clearly notice the differences between the computers partially masked
by the logarithmical scale of the times of the previous image.

Figure C.15: Linux ping MB/s.

As with latency, the data transfer rate is not exactly the same for all ofthe machines, but
the variation range is much smaller than that obtained when processes communicate
themselves in PVM. In addition, in terms of data transference rate:
• The maximum obtainable with ICMP is almost the physical, with which the difference

between this maximum (with the ping of Linux) and that obtained in PVM is due to the
PVM overhead.

• The particular case of low performance of computersprited and sofia is not due to
hardware or the protocols closer to the hardware (like IP and ICMP).

Like with the experimentation with PVM, just after message sizes of order 104 bytes
(30000 bytes forprited and cetad, and 60000 for the rest), a better performance of
communications is obtained. However, with these experiments, important information is
added complementing the contributions of the initial experimentation carried out with
PVM.

C.9 Conclusions of PVM and Linux ping
Experimentation

From the results obtained in PVM and with the ping command of Linux, it is worth
attempting an intermediate. It is very likely that we will not get a performance exactly the
same as the observed with the ping command because:
• With the ping command, differences in data representation are neither taken into

account nor solved.
• Communication routines outperforming a 64 KB message length must be implemented.

245

10 100 1000 3/6 x 10^4

0

0,2

0,4

0,6

0,8

1

1,2

prited cetad Josrap tilcara cf1 fourier paris sofia

Cantidad de bytes

M
B

/s

Number of Bytes

Appendix C: Communications in the CeTAD Local Area Network

In other words, and unfortunately, not always the messages to be transferred between
processes can be encapsulated in a single communication protocol package closerto the
hardware like ICMP.

However, it does not seem that these two constraints, though strong, will make PVM have:
• Such low communication performance, like in the case ofprited andsofia with direct

routing.
• Such heterogeneous performance depending on the computers among which data are

transferred.

In some way, on the one hand, the ping command seems to give a really optimist version of
the communication network performance, and on the other, PVM seems to have a really
high overload. This large PVM overhead produces a high decrease of the interconnection
network performance and this reduction of the performance is proportional to the
computer’s relative speed. In consequence, the communication performance starts
depending on the communicating computers and as heterogeneous as the computers’
heterogeneity.

Due to this, it is natural to seek an intermediate solution as regards the performance of the
computer interconnection network. This implies having better and more homogeneous
performance at the level of user parallel application processes (according tothe
communication hardware) than that obtained with PVM, though sometimes it is notthe
obtained with the ping command.

In addition, it is necessary to recall that, even though the whole experimentation (and thus
the conclusions reached at) is based on thepingpong method, i.e. on point-to-point
communications between two and only two processes:
• the original problem to solve is that of matrix multiplication,
• the algorithm developed to multiply matrices in computers networks is based on

broadcast,
• it is important to count with an efficient implementation of broadcasts due to their wide

use in parallel programs [11].

As it can be concluded from the experimentation shown in this chapter, the point-to-point
communication performance with PVM is not fully satisfactory. Consequently,there is no
reason to assume that the performance of collective communications, which arethe most
important for the application under analysis and for many others, is indeed satisfactory.

For the above reasons, the next chapter will explain the development and the performance
obtained in principle for a collective broadcast communication routine that can be extended
to a collective communication library.

C.10 UDP-based Broadcasts

The main performance objectives for the development of a broadcast routine different from
that provided by message-passing libraries like PVM and MPI implementations are:

246

Appendix C: Communications in the CeTAD Local Area Network

• Improving the performance obtained from the user processes in relation to that obtained
with “general purpose” libraries, such as PVM.

• Obtaining performance homogeneity according to the hardware homogeneity, which, in
the case of PVM, is not verified in the experimentation.

In addition, using PVM, the ways of sending the same message to more than one target
process are two:
• Multicast routing, pvm_mcast().
• Broadcast routing in a group, pvm_bcast().
And the implementation of both routines is based on multiple point-to-point messages.
That is, both pvm_mcast() and pvm_bcast() imply that, as minimum, the same message is
sentm times from the origin computer (where the process sending the message is being
run) to them machines where there is at least one target process of the message. If, for
instance, a broadcast or multicast message has five receptors and each of these receiving
processes is being run in a different machine (and different from the machine where the
process sending the message is being run), the total time of the message will be
approximately equal to five times the time of the same message, as if it were sent to
another process run over another machine. For these point-to-point communications among
machines, the same routines with which the experimentation was carried out are used.

In principle, a routine for broadcast messages withacceptable performance in Ethernet
networks is required, and where acceptable can be defined according to:
• Communication time absolute values closer to that provided by the hardware than those

observed in the experimentation with PVM.
• Scalability in terms of machine quantity, since when we take advantage of the Ethernet

network broadcast capabilities, the same message can be sent and receivedto/in as many
computers as are connected. It is evident that there will be a penalization dependingon
the quantity of computers receiving the same message due to the synchronization and
maintenance of the transferred data reliability; however, this penalization should be far
from the repetition of the same message as many times as different computers should
receive it.

Both the performances of pvm_mcast() and pvm_bcast() are not acceptable and, thus, the
PVM library would be of no use for broadcast messages requiring the matrix multiplication
algorithm in parallel. At this point there are several alternatives, and the two most
important are:
1. Using another message-passing library, such as some MPI implementation,which is

usually focused for this type of parallel architectures.
2. Implementing a broadcast message routine (and, eventually, a whole library of collective

communications) in order to make explicit use of the Ethernet networks’ broadcast
facility.

The use of a message-passing library has, in principle, a fundamental drawbackfrom the
point of view of the performance or of “prediction” of the good performance of broadcast
messages. In the specific case of MPI, it is clear that the performancedepends on the
implementation. More specifically, the implementation will be what determines the degree
of utilization of the Ethernet network characteristics for broadcast messages. In this sense,
MPI and, in particular, all its implementations share some degree of uncertainty, in terms

247

Appendix C: Communications in the CeTAD Local Area Network

of broadcast messages performance, with the rest of the message-passing libraries,
including PVM. The difference in this case are the specific experiments which were carried
out and determined the characteristics of the broadcast (multicast) messages performance
for PVM and not for the rest of the libraries. In fact, it is rather hard to optimize message-
passing libraries to meet the characteristics of the Ethernet network since:
• In general, libraries are, one way or the other, proposed as standards for message passing

parallel machines and, thus, it is pointless to orient them to a specific type of
interconnection network. In fact, both PVM and MPI have been implemented for
different types of parallel machines and, hence, it is pointless to orient them apriori to
Ethernet interconnection networks.

• In general, libraries provide a large quantity of communication routines. Event though
in theory it can be asserted that with the primitives send-receive for point-to-point
processes communication are enough, it has also been concluded that there exist awide
range of communication routines considered useful and even necessary in some cases.
Perhaps, the clearest example with this respect is the very definition of the MPI
standard. In this context, it is very hard to orient or optimize one or one type of
communication routine for one or one type of interconnection network without
producing an excessively expensive and/or too specific library (in terms of
development, maintenance, etc.).

For these reasons, broadcast message routine between user processes with a set of design
and implementation premises has been chosen to be implemented, so that:
• It takes advantage of the very broadcast of Ethernet networks, and in this way, it is

optimized in terms of performance. Since the algorithm exclusively depends on
broadcast messages, when the Ethernet network broadcast is used up, there is a really
good expectation in terms of scalability because the communication time isexpected to
remain constant and do not increase proportionally to the quantity of computers used.

• It is simple enough not to impose a too heavy load in terms of implementation and
maintenance. In addition, it is clear that simplicity per se largely contributes to the
optimum performance. On the other hand, the proposal is specific enough to make the
implementation simple.

• It has the maximum possible portability, in order to be used, whenever possible, evenin
the context of other interconnection networks (leaving aside Ethernet).

• It is implemented and installed from the user mode, without changing the operating
system (the kernel) and without needing special permissions (superuser). It isnormally
accepted that the best results in terms of performance are obtained adapting the kernel
and/or with the possibility of managing the process priorities, such as in [5] [4][12].
These possibilities are discarded since:

• In general, free-use libraries do not use these characteristics, and thusit would be
like changing the parallel software development context. Basically, a user who
has always used PVM never had/have to neither obtain special priorities nor
change the operating system in itself.

• The original proposal is directed to installed computer networks and each
computer does not thus necessarily have as single or main objective parallel
computing. In fact, we may find the case of different administrators for each of
the computers to be used in parallel and this produce, at least, a multiple
administration task which, in general, is not easy to solve.

• It could eventually be extended to a whole collective communication library, such as

248

Appendix C: Communications in the CeTAD Local Area Network

those proposed by [2] [1] [3], though specifically oriented to Ethernet interconnection
networks.

Most (if not all) the previous premises are fulfilled when all the design and implementation
of the broadcast routine is based on the UDP protocol standard (User Datagram Protocol)
[8] over IP (Internet Protocol) because:
• UDP allows sending a same data or set (package) of data to multiple targets at user

application level.
• Such as verified in all the machines used, the UDP protocol implementation takes direct

advantage of the Ethernet network broadcast capacity.
• In principle, it seems reasonable that the broadcast directly implemented as part of the

UDP protocol has a better performance than the implemented by a user. If in an ATM
network, for instance, it is possible to use UDP, it is very likely that the UDPbroadcast
will be better (in terms of performance) than that potentially implementedfrom user
processes. Even though the performance is not taken into account, whenever there exists
a UDP protocol implementation we will be able to use the proposed broadcast,
independently of whether the interconnection network is Ethernet or not.

• The user interface provided by the sockets is simple enough and widely extended to all
the UNIX versions, so as to simplify the implementation of the broadcast routine, even
when problems related to process synchronization (in the same or in different
computers) and communication reliability are to be solved.

• UDP, TCP, and IP protocols are easily usable from the user processes, at least in the
standard computers of the installed local networks.

In brief, a new routine of broadcast messages based on UDP and portable to, at least, all the
UNIX versions used in all the local networks in which the experimentation is carried out.
With this broadcast messages routine the same experiments were carriedout for the PVM
communication routines. Initially, the results of point-to-point communications
(“broadcast” or “multicast” message using a single receptor process) arepresented; and
finally, the results of broadcast messages with pvm_mcast() and pvm_bcast()of PVM and
with the proposed UDP-based routine are also shown.

C.10.1 A Single Receiver (Point-to-point Messages)

In order to compare the results with those obtained by the experimentation withPVM
point-to-point communication routines and with the Linux ping command, the broadcast
message routine was used as single receptor process. The results referring to the
communication times appear in Fig. C.16. It should be noticed that these communication
times between two machines may not be optimal since the communication routine is
designed for broadcast messages involving more than one computer receiving messages.
All the same, it can be used for comparing the results shown in
• Fig. C.14 with the communication performance according to the ping command (ICMP

protocol).
• Fig. C.12 with the PVM communication performance with Routing of tasks (TCP

protocol) and data representation translation.
• Fig. C.8 with PVM communication performance with routing among PVM processes

(pvmd, UDP protocol) and translation of data representation.

249

Appendix C: Communications in the CeTAD Local Area Network

Figure C.16: “Point-to-Point” Times with UDP-based Broadcast.

Comparing these results with those of the Linux ping command (Fig. C.14):
• Latency is quite higher, and it is verified that, at least up to the transference of a hundred

bytes, the latency time will be that dominating the total time. On the other hand,it is
confirmed that the communication latency depends on the machines involved in the data
transference.

• Communication time is similar to that obtained with the Linux ping command for 30000
(cetad and prited workstations), and 60000 bytes (the rest of the computers).

Comparing these results with those of the PVM point-to-point communication routines
(Fig. C.8 and Fig. C.12):
• Latency is similar to that obtained with PVM, and in many cases is almost identical.
• Computerscetad and prited do not show any performance anomaly for any size of

message. This confirms that the problem is due to the configuration and/or the
implementation of the TCP protocol in these computers.

• At least from the message length of 6000 bytes, the performance of communicationsis
homogeneous, such as expected from the point of view of the communication hardware.

• The performance with the UDP-based broadcast is rather higher than that obtained with
the PVM point-to-point communication routines. Even with the logarithmical scale,
communication times are really close to the optimal, as if there were no overhead of the
different layers of the software involved (operating system, broadcast routine, etc.). For
instance, the communication time of 106 bytes messages is really close to a second (or
1000 milliseconds, such as shown in Figure C.16).

Fig. C.17 shows the same results in terms of asymptotic bandwidth, where we canclearly
verify that the results are highly satisfactory in terms of performance.

250

8 100 1000 6x10^4 10^6 10^7

1

10

100

1000

10000

prited cetad Josrap tilcara cf1 fourier paris sofia

Cantidad de bytes

lo
g(

t(
m

s)
)

Number of Bytes

Appendix C: Communications in the CeTAD Local Area Network

Figure C.17: MB/s “Point-to-Point” with UDP-based Broadcast.

With these results of point-to-point communications:
• Almost all of the communication hardware performance at the level of parallel

application processes. The overhead of all the intermediate software layers does not
almost affect the final performance among processes.

• In the absence of collisions, the performance is independent of the communication
network and independent of the involved computers. The computer heterogeneity with
their relative differences in terms of computing capacity is not translated, like in PVM,
into “heterogeneous performance”.

C.10.2 Broadcast Messages

The final objective of broadcast communications is not data transference from one process
to another, but the transference from a process to a certain quantity of processes running in
different computers. It is for this reason that we have to verify, at least with tests, that
broadcast messages will be sent among processes with near-optimal performance and
relatively independently of the quantity of receptor processes, or computers involved in
broadcast messages.

Fig. C.18 shows the communication times involved for different lengths of broadcast
messages and different quantity of receptors assigned in different machines. With the aim
of comparing in a better way the different message lengths, we have chosen to show them
in the same graphic instead of displaying a graphic for each message length.Separated with
vertical point lines, over the axisx, the broadcast message times are shown for different
quantity of receptors (machines). The PVM results shown are independent of the use of the
routine pvm_mcast() or pvm_bcast(), because they have a similar performance.

It can be noticed that the time with PVM routines is kept quite independent of the message
length of 8, 100 and 1000 bytes, respectively. In fact, it depends much more on the
machines involved. For these message lengths, the proposed UDP-based routine uses

251

8 100 1000 6x10^4 10^6 10^7

0

0,2

0,4

0,6

0,8

1

1,2

cetad prited paris tilcara cf1 sofia fourier Josrap

Cantidad de bytes

M
B

/s

Number of Bytes

Appendix C: Communications in the CeTAD Local Area Network

relatively constant times and independent of the quantity of computers involved. For
broadcast messages of 60000 and 1000000 bytes, the time is directly proportional to the
quantity of receptors when the PVM routines are used. Once more, when the routine
directly based on UDP, the time (apart from being quite better than the best of PVM) is
relatively constant and independent of the computers involved.

Figure C.18: Broadcast Times with PVM and based on UDP.

Fig. C.19 shows the same results but in terms of MB/s and, thus, some details aremasked
by the logarithmical time scale of the previous graphic. For the computing of the
asymptotic bandwidth or transference rate or MB/s of a broadcast message, weshould
recall that the message is unique, the same data should reach multiple targets independently
of the fact that the implementation is carried out with multiple point-to-point messages or
in some other way.

Figure C.19: MB/s of Broadcast with PVM and based on UDP.

252

 8, 2-9 rec. 10^2, 2-9 rec. 10^3, 2-9 rec. 6x10^4, 2-9 rec. 10^6, 2-9 rec.
0.001

0.01

0.1

1

10

UDP

PVM

Cant. Bytes, Cant. Receptores

Lo
g(

t)

 8, 2-9 rec. 10^2, 2-9 rec. 10^3, 2-9 rec. 6x10^4, 2-9 rec. 10^6, 2-9 rec.
0

0.2

0.4

0.6

0.8

1

1.2
UDP

PVM

Cant. bytes, Cant. Receptores

M
B

/s

Number of Bytes, Number of Receivers

Number of Bytes, Number of Receivers

Appendix C: Communications in the CeTAD Local Area Network

As previously explained, the communication time is dominated by the latency, at least for
messages up to 1000 bytes. In consequence, the performance in terms of bandwidth or
transference rate is quite poor using PVM or the UDP-based broadcast routine. For
messages of 60000 bytes, we can easily notice that the performance, when using routines
provided by PVM, depends on the quantity of receptors and relatively constant, when using
the UDP-based routine. The variations in this last case are basically based on the fact that,
for this message length, the latency of each machine affects the total time of the
communications. For messages of 106 bytes, the latency of each machine is already lesser
than the data transference time and, thus, the performance has less variation in asymptotic
bandwidth. In the case of PVM, once more, the performance is proven to decrease as the
quantity of computers used increases and, thus, we can assert that the broadcast
implementation uses multiple point-to-point messages.

C.11 Broadcasts in the LQT Local Area Network

Experimentation in LQT is similar as regards broadcast messages. Thesame characteristics
appear: performance depends on the quantity of computers involved for PVM routines, and
almost constant performance for the proposed routine directly based on UDP. Alike what
occurs in CeTAD, heterogeneity is lower since, for instance, there are no differences in
terms of data representation, because all available computers are PCs. Also, alike CeTAD,
the quantity of computers is lower and thus the maximum performance degradation (when
all computers are used) is lower as well.

One of the most remarkable differences yielded by the LQT experimentation inrelation to
that of the CeTAD refers to the point-to-point messages latency. Since machines are quite
similar and performance differences as regards computing capacity are more restricted,
message latency is much more limited in terms of absolute value range. Infact, this makes
communication performance among user processes even more independent, since now not
only is the asymptotic bandwidth closer to the interconnection network hardware’s(using
the UDP-based broadcast messages) but also the total communication time ismuch closer
to what can be estimated with the hardware values.

C.12 Broadcasts in the LIDI Local Area Network

As expected in LIDI local area network, communication performance is better since the
communication network is a 100 Mb/s Ethernet instead of 10 Mb/s, like those of the
CeTAD and LQT. Even so, experimentation proves that for PVM the broadcast message
time depends on the quantity of computers involved. It also proves that broadcast message
time relatively depends on the quantity of machines involved when the directly UDP-based
routine is used.

It is very interesting how latency influences the total communication time when the

253

Appendix C: Communications in the CeTAD Local Area Network

hardware bandwidth is ten times greater. Since most of the latency is due to the overload of
factors external from the very Ethernet interconnection network (operating system,
protocols, communication routines among processes, etc.), the absolute latency time is
quite independent of the bandwidth capacity. Multiplying by ten the bandwidth of the
Ethernet network, the latency time “weight” is implicitly multiplied (though no necessarily
by ten) in the total time of the communications. The quantification of these factors should
be computed at least with the design of specific experiments, which are out ofthe scope of
this Appendix.

The impact of the latency on the final time of communications is definitely important
taking into account the tendency to use networks with greater bandwidth capacity.All the
same, it is expected that the latency at interconnection hardware level will be reduced
proportionally to the bandwidth increase and that the overhead imposed for the user
processes will be reduced.

References

[1] Bala V., J. Bruck, R. Cypher, P. Elustondo, A. Ho, C. Ho, S. Kipnis, M. Snir, “CCL: A
Portable and Tunable Collective Communication Library for Scalable Parallel Computing”,
Proc. of the 8th International Conference on Parallel Processing, IEEE, April 1994.

[2] Banikazemi M., V. Moorthy, D. Panda, “Efficient Collective Communicationon
Heterogeneous Networks of Workstations”, Proc. International Conference on Parallel
Processing, pp. 460-467, 1998.

[3] Barnett M., S. Gupta, D. Payne, L. Shuler, R. van de Geijn, J. Watts, “Interprocessor
Collective Communication Library (InterCom)”, Proc. of the Scalable High-Performance
Computing Conference '94, Knoxville, TN, USA, IEEE Computer Society Press, pp. 357-
364, May 1994.

[4] Chiola G., G. Ciaccio, “Lightweigth Messaging Systems”, in R. Buyya Ed., High
Performance Cluster Computing: Architectures and Systems, Vol. 1, Prentice-Hall, Upper
Saddle River, NJ, USA, pp. 246-269, 1999.

[5] Ciaccio G., “Optimal Communication Performance on Fast Ethernet withGAMMA”,
Proceedings Workshop PC-NOW, IPPS/SPDP'98, Orlando, FL, LNCS No. 1388, Springer,
pp. 534-548, April 1998.

[6] Institute of Electrical and Electronics Engineers, IEEE Standard forBinary Floating-
Point Arithmetic, ANSI/IEEE Std 754-1984, 1984.

[7] Pacheco P., Parallel Programming with MPI, Morgan Kaufmann, San Francisco,
California, 1997.

[8] Postel J., “User Datagram Protocol”, RFC 768, USC/Information Sciences Institute,

254

Appendix C: Communications in the CeTAD Local Area Network

Aug. 1980.

[9] Postel J., “Internet Protocol”, RFC 791, USC/Information Sciences Institute, Sep. 1981.

[10] Sun Microsystems, Inc. XDR: External Data Representation Standard.RFC 1014,
Sun Microsystems, Inc., June 1987.

[11] Wilkinson B., Allen M., Parallel Programming: Techniques and ApplicationsUsing
Networking Workstations, Prentice-Hall, Inc., 1999.

[12] GAMMA Home Page http://www.disi.unige.it/project/gamma/

255

