Appendix C: Communications in the
CeTAD Local Area Network

Interconnection networks are an essential part in parallel computereaithigs. In fact, a large
part of the parallel computing bibliography is dedicated to this subject mdattas. is relevant

from two points of view highly related to parallel applications; flexilyiland performance. In
addition, the higher the interconnection network's flexibility and performameshigher will be

the hardware cost, and the increase in this cost is usually rather morethaeahe increase in the
number of processors of the parallel machine.

In the particular case of parallel matrix multiplications analyzed hia &xperimentation, the
interconnection network is of utmost importance. Performance indexes show thatomibst
running time of the matrix multiplication in parallel is spent for data trassman. Given the
impact that the low communication performance has over the total performance péarigel
application, it is necessary to count with a precise way of characterthiegnterconnection
network performance in order to make the necessary decisions for the opitmin&the whole
application performance.

This Appendix is mainly dedicated to the characterization of the intercommectetwork
performance of the CeTAD local area network. The results of a set of raaljylesexperiments
that allow evaluating the network quite precisely are developed and shown. tkeagh the
message-passing library used is PVM (Parallel Virtual Machine),esointhe performance
characteristics common to most (if nail) message passing libraries implemented for local area
networks are also presented, such as implementations of MPI (MessagjegFlaserface). It is
important to notice from the very beginning the user-level process poitn oif Y@wthe
communication performance, since it can be really far from the values ddbinéor available at)
the interconection/communication hardware.

Although a quite large set of point-to-point communication performance resultwgeettwo
processes running in different machines) are presented in PVM, broadcastgmgmerformance
results are also presented. In fact, just as the parallel matrix pticdtiion algorithm has been
designed, it is the broadcast message performance the one which affectsathmfformance of
the matrix multiplication parallel processing. Eventually, the perferceacharacteristics are given
in LQT and LIDI local networks, in which similar experiments have beerried out; some
comments on the most remarkable performance differences in these netwenksesented, as
well as the reasons for these differences.
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C.1 Introduction

LThe processor interconnection network is fundamental in parallel computeise tase

of parallel computers with (or based on) shared physical memory, this intext@me
network can be clearly identified not in terms of processors' interconnegtimng each
other but in terms of processors interconnected with the memory. In other wortliese
computers, removing processors interconnection network withdhlg)(memory would
mean eliminating completely the possibility of running applications. On the btned, if a
processors' interconnection network is removed from a parallel computer sttibdted
memory, it stops being a parallel computer and turns into a set of separate crgute
modules of CPU-Memory, without the capacity of cooperating for the solution of a
problem. Since computer networks used for parallel computing clearly belong to the
MIMD type of distributed memory, we will keep on considering the interconnection
network for the data transmission among processors (or computers, directly).

As regards the processor interconnection network flexibility, the problem imigtto

find a way of delivering data among processors, but also obtain the maximum of
simultaneous communications. The typical examples in this sense are focusibe on
capacity or not of communicating at the same time all the possible processar grairs
delivering information from one processor to the remaining in a single step @number

of steps independent of the number of interconnected processors).

The flexibility of an interconnection network will define the easiness (or mdtuser
applications to solve a communication among their processes. The fact thaireaebsor

will be in charge of running one or more processes to be communicated to other psocesse
assigned to other processor/s should never be overlooked.

The view of the interconnection network performance is directly related tddtetransfer
time among processors of a parallel computer. This performance view is not agcess
disjointed from that of flexibility. In fact, the greater the number of sitanéous data
transfers among pairs of processors, the greater will also be the capabitjuantity of
data transferable by an interconnection network per time unit.

Even though this idea obandwidth (transfer rate) or data quantity per time unit is
important, another relevant performance index is the minimum communication time
between two processors, or startup, or also called communication latenoynga
processors.

In terms of costs, there is an invariant relation through the different p&ssiiof
interconnection networks: the higher the flexibility and/or performance of the
interconnection network, the higher will also be the cost. The cost increasesvari
according to the interconnection network used, but in many of the cases increlasing t
number of processors of the parallel computer implies a more than linear incietse
processor network cost. In the particular case of the installed computer kefwog cost

is zero (in general, worthless), since they are already interconnected.

The main drawback of computer interconnection networks in terms of performatitat is
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they were not designed for parallel computing. In this sense, the local netwdokrpance
is placed several orders of magnitude beloaditional parallel computers interconnection
networks. That is why it is really important to evaluate their performanm® the point of
view of user processes that make up the parallel application.

POn the other hand, the interconnection network performance has a direct retatien t
performance and granularity of parallel applications that can be run over a contpugey
communication time tends to degrade the total running time of a parallel applicatess unl
we count with, and use to the utmost, the capacity of overlapping computing time with
communications. From the granularity point of view, if the communication time taiolat
result in processor;RAs equal to or greater than the computing time necessary to compute
it, then the most reasonable is to obtain it locally (i Baving time and / or complexity of

the application.

C.2 Ethernet Networks

In the particular context of installed computer networks, local area networkshN, the

most used interconnection network is that defined by the standard protocol 802.3. This
standard is also known as 10 Mb/s Ethernet network, due to itsbit® per second
transmission capability. The characteristics of this interconnectionanktare very well
defined and known, in terms of hardware and of the characteristics of itbifigxiand
performance.

In addition, most of the 10 Mb/s Ethernet network characteristics are sitnitaose of the
100 Mb/s Ethernet network, in which only the parameters/indexes referringftorpance
or communication capacity are changed. This similarity is exemplifigcind also taken
by, many of the communication hardware companies in charge of commercialif@sy N
(network interfase cards) which count with both communication capacitiesed@aed to
as of 10/100 Mb/s.

Fig. C.1 schematically shows the basic logic way in which workstations@reected in a
local network using Ethernet. It can be easily noticed that it is of bus typeenthe main
characteristics of each data transfer are the following:

There are no priorities nor the medium access time is predictable.

It has a single sender.

It occupies the only communication channel.

It can have multiple receivers.

The medium access mode is CSMA/CD (Carrier Sense, Multiple AccesslisiGol

Detect).

The first two characteristics clearly imply that there should not be mben tone
simultaneous data transfer because, in fact, there is only one communicatiomelcha
shared by all computers. The last mentioned characteristic makes theneméion of the
broadcast and/ormulticast type communications really natural, where a message is sent
from a computer and received by the remaining or by a subset of the remaining computers
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of the network, respectively.

Figure C.1: Ethernet Network.

In most of the installations, the initially adopted communication hardware res thesed
on coaxial cable, with which the physical topology is equal to the logical topadddyg.
C.1.

Gradually, the wiring rules used in most of the installations have been chamgeitié use

of twisted pair cable with hubs (basically, communication concentratorseq@ters) and

with communication switches, which count with the facility of isolating pdo¥point
communications. This isolation in switches is produced when the hardwaresdatecint-
to-point data transmission between two of the computers interconnected bych. sWso,
several combinations of hubs and switches are possible, with the objective of keeping
certain performance as the data traffic increases, and also reduciogstiigy avoiding the
massive use of communication switches.

These communication networks are important not only due to the number of installations
currently working, but also due to the fact that they are clearly less exetisgan the rest

of the commercialized alternatives. They are less expensive in terniseohecessary
hardware (cards, connectors, and wiring) and also in terms of install&toon:workforce
(technicians) to hardware acknowledgement and hardware starting up on the gaet of
operating system. All of this necessarily reduces installation and em@nte costs of
Ethernet networks.

Cost reduction in relation to the other computer interconnection alternatiy@iges certain
guideline in the Ethernet network maintenance as well as in the installafiamew
networks with this hardware. We should take into account that the cost may inchesas
such as: network cards in each computer, wiring (it may include hubs and/ohewiiitc
the case of Ethernet networks), installation, maintenance and technical tras@thper

C.3 Performance Evaluation

Communication time (used in general to characterize the performance of an
interconnection network) between two processors is generally characteriagd]\l1]
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tn) = a+ pn Cil

where

- nis the transferred data unit to be measured (bit, byte, a simple precisaimg point
number representation, etc.).

- ais the time necessary to establish a communication between the two sps;eshich
Is usually called communication latency time. It basically consistb®@ihtinimum time
that each communication between two processors will spend independently of the
guantity of transferred data. Normally, it is given by the communication harehand
can be estimated with the time used to transfer a data unit or, when possibéssage
without data.

- [ is the inverse value of the asymptotic bandwidth or data transfer rate of the
interconection network, i.e. B/ is the asymptotic bandwidth. Normally, the
communication network data transfer rate is given by the amount of data (bits, byt
etc.), per time unit that can be transferred between two processors.abgnehas a
minimum limit given by the communication hardware plus the time used up by
processes and/or function of the communication hardware.

t(in) = a+ fn Cl1
where

Even though the communication hardware, or processor interconnection network, has wel
defined values for parametessand £, the user process usually obtains worse values from

the point of view of the processor interconnection network performance than those given
by the hardware. Both the latency time and the time necessary to trarshitata unit are
affected (and, thus, they increase) when all the communication layerssagge¢o make a

user process message running over a processor reach another user process running in othe
processor take part in the transference.

It is also really difficult to make am priori estimate of the overload that communication
libraries - with the available users (processes), the operating systerface with the user

and / or with the previously mentioned libraries, and communication protocols - expos
communications that are carried out physically over the communication medium being
used. For this reason, experimental methods for measarangl S real parameters, which
user applications will find with respect to the parallel computer intercaiorecetwork,

are quite often used.

Eln the specific context of computer networks, and with the possibility of hedeemus
hardware, this overload becomes more important when the processor interconnection
network performance is to be evaluated. In the case of traditional parallgluters, the
computation of realr and S is often easier and with more final values (what user parallel
application processes obtain) closer to those of the hardware because, from the
communication hardware to the interface used by user applications, evenglongnted

to making parallel computation.

It is really difficult to precisely quantify the relation of local networksth traditional
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parallel computer interconnection networks in terms of the mentioned performance
indexes. What is generally accepted is that the worst relation is givealation to the
initialization time of messages to be communicated between two pexeg®reover, in
the context of heterogeneous local networks, communication initialization usnally
depends on the computers used because the operating system call times are irsvolved a
well as their further overload in terms of the used protocopfatocol stack) maintenance
and management. At a level closer to hardware, the times of
memory access,
DMA (Direct Memory Access) channel initialization-use, if used, and
the related interruptions management and / or interface with the netwatko€@ach
computer to be communicated
are also involved.

Summing up, local network performance is lower than that of the interconnection
processor networks of a traditional parallel machine from several points of view:

Latency and bandwidth.

Overlapping capacity.

Latency heterogeneity depending on the machines heterogeneity.

C.4 Evaluation with the Ping-Pong Method

In the context of parallel computers with MIMD-base architecture, the raxpatal
method for assessing the performance of the processors’ interconnection netwuaddgor
specifically the real values of parameters and , has been thgbgfpong messages. The
method is really simple in itself, since, in order to evaluate the commatiart time
between two processors &d B, the steps described in Fig. C.2 are to be followed:

Ping i >

Figure C.2:Pingpong Processes.

Send a message from processor P1 to processor P2.

Send the received message in processor P2 to processor P1, once again

In processor P1, the total time used for the communication of both messages 1$ know
and, thus, this time is divided by two, achieving the message communication time in one
of the directions.

wN e

One of the most attractive characteristics of this method, apart fronmgdisity, consists
in that it does not need the synchronization of none of the processors involved in the data
transference so as to obtain a reliable data communication time. Oslkeerwe should
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know the sending time of the message from processto processor B the reception time
of the message to processar Bnd processors should be synchronized with respect to a
common time reference.

Another advantage of this method consists in the independency of the means by which
messages are communicated between processes. The time spent in sendagpiand

the same message in fommunicating with B can be taken independently of the way the
message is transmitted. In fact, it is possible to analyze differemtaddle communication
alternatives between processors in order to choose the most convenient.

On the other hand, one of the constraints as regards reliability of this methawl thessfact
that the communication time between processors must not vary accordingdivetteon
of the communication, i.e. there exists certaymmetry of communications between
processors. In the previous listing, it is assumed that the time used to seessage from
P, to P, is the same as that of sending the same message fgaim B. Anyway, this
situation is, without doubts, what usually happens in the fields of interconnectionkstw
in general.

Another simplification of thepingpong method consists in masking, or better, disregarding
the possibility of making the transmission and reception of data simultaneduilgiupl ex
communication), or the possibility of overlapping computation with communication that
can be used up by applications. In both cases, i.e. with the available haradwanaling

one or both things, having the point-to-point communications performance it is possible to
reach the communication performance values that applications may obtain.

In the specific case of computer networks, the user normally does not usually have too
much control (or no control) over the utilization or not of the hardware facilitias. |
consequence, the performance values obtained by the pingpong method will be the closest
to what user (parallel) applications can obtain.

C.5 Different Ways of Message Transmission with
PVM

Since it is necessary to characterize the communication time betweeesges of a
parallel program, which are communicated using the communication routines pdoyde
PVM, it is necessary to explore all the possible alternatives in termihefattainable

performance with these routines for user applications.

With the pingpong method previously explained, we can evaluate quite fast which the
attainable performance in communications is between processes assigagterent
processors of thevirtual) parallel machine. In addition, since we count with the values
related to the performance of the communication netwarkr{d 5) of the communication
hardware, we can certainly know the overload time degree, since PVM is wsed t
communicate tasks.
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When performance of communications taking into account not only the hardware but also
the communication software (basically, the involved operating system pescpks PVM
communication routines) has to be evaluated, it is necessary to explore theermliff
communication alternatives to transfer data between the parallel applicabesses.

In general, PVM counts with two levels of flexibility when data are to bengferred
among processes: data codification and “routing” (in PVM terminology) of agess Data
codification is related to the representation of the information made ¢h @aocessor
(computer) and the message routing is related to the way data are traddbetween
parallel application processes using the physical communication network amli PV
communication routines/processes. In the following subsections, we presentdlig ofe

the alternatives for the encoding and routing in PVM. In the particular case of the
codification, we will also describe an alternative to the classicalswesed both in PVM

and in MPI, which will be calle®irect Trandation of Data Representation.

It is necessary to make clear that, even though this description is tyfiéd&/M, both in
MPI and in any other library used to parallel computing in computer networks)libes
necessary to define both the way in which the different data representat®msatched
and the way in which data are transferred over a computer interconnection network.

C.5.1 Message Data Coding in PVM

Data codification should be basically chosen from what in PVM is called:

a) PvmDataDefault: it is used when the communicated processes are assigned to
processors with different architectures or when the application does not have any
knowledge of the processors (computers) architecture over which it is run. Dat to
transferred between processes are codified in XDR format before beitiglsen, they
are copied to a memory area from which PVM routines will send (buffer) indébion
and then they will be decoded (from the XDR format) when they are received,ebefor
being used by the receptor process.

b) PvmDataRaw: it is used when the architecture of the parallel machine is homogeneous,
be it a computer network or a multiprocessor. Data transferred between sgeca®
not codified at all, they are only copied to the PVM buffers before making the dglive
via the communication networks.

c) PvmDatalnPlace: this alternative is similar tdPvmDataRaw, but without a copy of
user’s data into buffers. There is no data codification, nor extra memory dost$o
data communication, nor data copying time; however, the user must assure thatlidata wi
not be changed from the call of the sending routine until data are efficiently séme to
target process.

Fig. C.3 shows the three types of encoding and their relation to the codificatidn a
memory used for sending data from processaBsigned to a processor and process P
assigned to other. When the RymDataDefault encoding is used, data are copied from the
user’s process data areatB the area of PVM buffers and codified in format XDR [10] in
step 1. Then, these codified data are sent to the target processor (whiebehtor process
P, is assigned to), using the interconnection network, in which they are receied
another area of PVM buffers. In step 2, data located in PVM buffers are deaukd
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copied to the data area of the receptor processor P

When the b)PvmDataRaw encoding is used, the process is the same, with the exception of
not using any type of encoding for the data that are being sent. The bytes sequence of the
data area of process Reaches process.RVith this method we save buffers memory used

for the XDR codification, and we also avoid using the CPU involved by such codditati
however, the copies and buffers are used in the same way as in the case of using the
PvmDataDefault codification.

When the c)PvmDatalnPlace encoding is used, we not only avoid what is implied in the
XDR encoding (processing and associated memory) but also all the memorgargces
store the message in the origin processor of the communication. In the casg &f. &
data are sent in the first step from the user procaessvRich sends the message to the
processor which the receptor processsPassigned to, where it is stored in PVM buffers.
In other words, output PVM buffers are no longer necessary for the message.

P P P
1 1 1
(o’
1 1 1
v v v

R NN\ Y
2| P 2 P 2. p
2 2 2

a) PvmDataDefault bPvmDataRaw cPvmDatal nPlace

I Datos de usuario  E22%8 Datos codificados Datos no codificados
Figure C.3: Codification Alternatives in PVM.

In the examples of the performance evaluation of communications included in the PVM
distribution, the way in which data are codified B/mDataRaw, with a comment
indicating that, in case there is heterogeneity in the parallel machmshauld change for

the PvmDataDefault encoding. In general, in computer networks, there is no option other
than codifying data (with the addition of the copies to PVM buffers) wAtmDataDefault

so that data do not loose their meaning when they are delivered to other procesteéxe
over other processor (computer). When the used computer’s heterogeneity isddoept
parallel computing, it is not possible to assume that the data representatibnomputers

iIs homogeneous.

From the performance point of view, the most appropriate codification method is the
PvmDatalnPlace. Flexibility loss due to the restriction as regards the impossibility of
modifying the sent data does not seem to entail a problem in the particular cas¢ricEs
multiplication. Sent data (sub matrices of matrix B, in the operation AGBare read-only
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for all the processes that use them. All the same, the data representagoogbatity
problem persists.

All numerical applications depend, as regards data representation, on a quitedreduc
guantity of data types which are generally predefined by the languages usedalbeC or
FORTRAN). In general, two basic types can be identified, from which satectures with
which we operate in applications (mostly vectors and matrices) are defsirdte
precision and double precision floating point. For instance, the representatiompfex
numbers, also necessary for a wide range of numerical applications, is defifetttion

of a pair of single or double precision floating point numbers, according to the specific
application.

From the three types of encoding already explained, the general strategy arsed f
transferring data from a computer to another schematically is:

Codify to a Decode to th
known formal—» tC odeq dgta receivers'’
(XDR) ansmission > format

Figure C.4: Strategy of De/Coding of PVM/MPI.

That is, before transferring data from one station to the other, data are codeder to
keep the information they represent. In this sense, both PVM and MPI adassihthere
exists data codification to be delivered, this codification is carried otdgreedoing the
transference.

In some way, this coding-transmission-decoding strategy can be consideredvebing or
anticipatory to the communication, because it always works independently of the
communicated computers and is carried out before data are being delivered.

C.5.2 Direct Translation of Data Representation

One alternative to PVM’s (and MPI's) anticipating feature of keeping tha danhsistency
between the different computers consists in delaying the de/coding so that:
- Data are not always sent without some type of previous encoding (neither to XDR nor to
any other format).
Data are received as a bytes sequence in the receptor, together withriptdes€ the
data type they represent plus the type of origin architecture (type of origin
representation).
If the processor in which the receptor process is located has a different data
representation from the processor in which the sent process is located, data ar
“decoded”: the representation of origin data is changed so that it matchearget t
representation.
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In consequence, there is no de/coding; rather, in the target processor, the coatmonni
routines will be in charge of “translating” the data representation of a comginten
which the message was sent) into the other (in which the message is received).

In the case of coding a known representation, there are two translations: thatafdin
representation (from which the message is sent) into the known representatd then
from this into the target representation (where the message is receineitie case of
direct translation, there is only at least one, which changes from the origm da
representation to the target data representation when necessary.

Notice that the direct translation should be done in the target and not in the ofigach
message, since in this way we avoid problems with the so-called cuo#ecti
communications, such amulticast and broadcast. In this type of communications, from
the same process in a processor, we can send data to multiple processhpfténtially
implies target processors), and thus there would not exist a unique and possibliatiing
technique.

Direct translation for user processes can be as transparent as XDR encazting /M
and in (some implementations of) MPI. In the case of PVM, there are no draw/bacits
implementation because each computer of the parallel machine counts wittigdéon
functions as well as a means for identifying the location of each task (paraesshich it
IS run).

As regards the codification of data for their transmission, translationheadvantage of
minimizing the processing and memory used for each message on the sideqprpoés

the sent process. In fact, the sending process takes the data from its mesidsrihedata
descriptors (of how data are represented), and sends the message to the proepss.

On the side (processor) of the receiving process, both memory and processing depend on
the complexity of the data translation. As it will be seen next, at leashenparticular
context of computer networks, the translation of representation is quite sienpdejn
consequence the need of memory and processing is also reduced.

Going a step further in the analysis of number representations in the partonlxt of
computers, a surprising homogeneity is found as regards the acceptance of thedstanda
IEEE 754 [6] for the representation of floating point numbers. In all the computers to
which there is access and over which the experimentation was carried out, whichsinclude
PCs with Pentium processors (in some of its multiple versions), Celeron, &fd A
K6-ll,
Sun workstations with processors MicroSPARC-II,
An IBM RS/6000 workstation, with processor PowerPC,
the adopted floating-point representation (at the level of operations of the prdsessor
floating point unit) is the same: IEEE 754 in both versions (single and double).

It is worth mentioning that the heterogeneity at the data representationckavdle greater
in other environments, for instance, among different traditional parallel meshivith

highly complex floating-point units. Independently of this, it should be recalled theat
tendency (even in the most powerful/expensive parallel machines) is to usdasta
hardware. IBM SP2, for instance, are based on PwerPCs, and ASCI Red amdciBl
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based on Pentium Pro and MIPS R1x000 respectively.

Even when all computers adopt IEEE 754 as their floating point number representation,
this does not mean that, when sending a byte sequence from a computer to another, these
bytes will entail (represent) the same in both machines. Another hindranbe isay to

save bytes of a particular type of data (in the case under analysis: floating pdoet juirm
memory. In this case, the “norms” followed are two, and, in fact, there doesxmitmany
alternatives to explore: first the most significant byte (usually dali¢tle endian in
literature), or first the least significant (big endjaim literature). It is clear that the
translation of a format into another is immediate and without large memoryogegsing
requirements.

From the last two paragraphs it is deduced that, as a minimum for the reptesenfa
floating point numbers, the direct translation of data representations among cosngute
advantageous in relation to codification, both in memory and processing reguit®rit is
not hard to make a similar analysis with the other types of basic data (tbrEaotegers,
etc) and arrive at the same conclusion. This is why the experimentation inc¢hidegay

to “codify” data for the message transmission among pingpong processes.

C.5.3 Data Routing of a Message in PVM

Message routing in PVM refers to the way in which data of a messageaarspbrted
among user processes and the PVM process in itpefid) in each computer. The two
most popular message routing ways among tasks are shown in Fig. C.5.

0

A
A
a) PvmRouteDefault b) PvmRouteDirect

Figure C.5: Routing Basic Alternatives in PVM.

In the case of aPvmRouteDefault, data are transferred among procegs@sd over the
computer interconnection network using the UDP communication protocol (over IP).

In the case of bPvmRouteDirect, data are directly transferred among the processes of the
parallel application over the computer interconnection network using TCP comrtianica
protocol (also over IP). The general recommendation made in the PVM documensation
that, in performance terms, option b) is the best.
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C.6 Different Ways of Message Transmission with
MPI

Since MPI is proposed as a standard library of message passing among prafesses
parallel application, option details such as encoding and routing (in the PVM)seeseot
available at user levels. In this sense, the creation of MPI is quitedar énd independent

of computer networks and, in consequence, heterogeneity in data representatiadheor in
alternative ways at communication protocols levels among processors do not have the
relevance acquired from the beginning in PVM, which was created for (heteeogs)
computer networks. In terms of the possible implementations, it is highly demah#hatte

MPI is possible within the whole range of message passing parallel comphterns,
multiprocessors, multicomputers witad hoc interconnection networks for parallel
computing, or computer networks.

MPI implementations for computer networks generally assume that the dataee{ation

is heterogeneous (in fact, there are no many alternatives) and IP conyeGingtdvance
encoding method (with XDR, for instance) is usually used for solving the heterogeneity of
data representations. As usual, in the context of MPI, we should recall that the
implementation is in charge of making a decision of this kind, and, thus, different
implementations of MPI can have different ways of implementing it. Sityilawhat in

PVM is referred to as routing (in reference to the way in which data oéasage are sent
from the sending process to the receiving process), depends on the MPI impleomgntati
even though in most of the cases there is a tendency to use IP connectivitys{ahtese

free that can be obtained via Internet).

In any case, independently of the MPI implementation, be it for computer networks or any
other type of parallel computing architecture, there are no alternativesralensls neither

over the encoding or message data routing. In MPI, we gain in transparencyespict to

the implementation and the parallel architecture, and in the particuta ehcomputer
networks, we perhaps lose performance if machines are homogeneous or if the previously
explained data type representation translation is used.

C.7 Initial Experimentation with PVM

The initial experimentation with PVM was carried out in order to obtaim@guting base

of a andp using the different ways of encoding and routing that can be selected in PVM at
user level. The machines with which the experimentation was carried eweailed in
Appendix X: CeTAD computers, interconnected with a 10 Mb/s Ethernet networke Sinc
the computergetadfomecl and cetadfomec?2 are exactly the same, the results are shown
for one of themdetadfomecl), which is referred to asf1.

The pingpong method was used locating progasg always in the same computer and
measuring the times with procegsng in each of the rest, each time. Even though the most
important to estimate (and thus, to measure) are parameters and , pettiicscase of
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computer networks, the time necessary to solve the data representation dmetésog
(de/coding or translation) might be useful. The computer chosen to locate process ping
purmamarca, since it counts with the necessary memory quantity for all the message
lengths (64MB) and is the fastest of the CeTAD computers.

Measurements were carried out with the network free of interferences (withigtttraffic

in the network other than that generated by computers during the pingpong process), and
they were actually carried out on different days under the same conditions, obtéiei

same results.

According to what has already been explained, in heterogeneous computer netiends, t

exist four alternatives for the management of messages among processes:

1. PvmRouteDefault Routing with PvmDataDefault Encoding, i.e. transmit codified data in
XDR format using process PVMD in each of the involved computers.

2. PvmRouteDefault Routing without codification, but with data representation translation,
i.e. translating the representation whenever necessary in the targetp@ug using
process pvmd in each of the involved computers.

3. PvmRouteDirect Routing with PvmDataDefault Encoding, i.e. transmitting codified data
in format XDR directly among pingpong tasks.

4. PymRouteDirect Routing without codification but with translation of data
representation, i.e. translating the representation whenever necesstrg target
process and with the data transferred directly anpomgpong tasks.

Since it is difficult to find a set of message lengths representing alptssibilities of
applications and parallelization, the chosen lengths cover a wide range: frepages of
eight bytes (the necessary for two single precision floating point numbers or onesdoubl
precision) up to messages of Ifytes. The intermediate lengths are€, 107, 6 x 1¢, 1¢°

and 10. The particular case of length 6 x “L@vhich does not follow the “logarithmical
convention” of the increase in message length) was chosen in order to then cdhwpare
results with thepingpong version of the operating system (in particular, Linux): fsieg
command, whose utilization is justified in the next section. Since lengthl€' xs really

too close to 1o contribute with significant data, it was not included in the results.

For more information and clarification of the data obtained, the results wiprbgsented in

two formats:

1. Total communication time for the pingpong. This alternative is in turn predente
logarithmical format of the times, given the chosen message lengths.

2. Bandwidth or bytes/second, for a better idea of the performance relation between what
obtained at user level with PVM and the hardware (10 Mb/s Ethernet).

C.7.1 Performance with Routing Between pvmds and Codification

It is assumed that this alternative is the least convenient as regards thenaerce of the
computer interconnection network, and the results obtained in terms of commanicati
(pingpong) times are shown in Fig. C.6. It can be clearly seen that the conatianic
latency time in PVM among processes varies between 1 and 10 ms depending on the
computer, since these values repeat themselves in spite of the fact thaigeéssgths
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vary between 8 and 1000 bytes (two orders of magnitude, in terms of growth).
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Figure C.6: Times with Routing and EncodigmDefault.

The logarithmical time scale of Fig. C.6 masks, in some way, the difter® among
computers, though we can see that, for all the lengths, there are differentuwooation
times for the different machines involved.

Fig. C.7 shows the same results, but in function of MB/s (megabytes per secenthe
guantity of information (2 bytes) per time unit. Both in this figure and the following ones
expressed in terms of MB/s, the relative differences among computetsecararly seen,
as well as the relation to the hardware capacity. In the particularafabes figure, what
was expected can be proved for all the computers: the larger the messabetiemdigher
the performance.

1
0,8
0,6 s 8 8
Q VA NI N, §§7
i) § 3 =
= § g 7 §§
0.4 S
o = : : -
%ﬂ & i § %
1 %@ i
0 \ \ \ \
8 100 1000 6x10™M4 1076 10n7
Number of Bytes
[] prited [l cetad [} Josrap = tilcara cfl & fourier Ff paris [ ] sofia

Figure C.6: MB/s with Routing and EncodiRgmDefault.
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In the particular case ofilcara and cf1 there seems to be an abnormal behavior for
messages of IMytes, but this can be explained in function of their 32 MB main memory
sizes. This size is not big enough for the message, plus PVM buffers, plus tied tee
processes (pvmd, operating system, etc.) and their memory requirementsh beabes we
have to recur to thewap space (handled by the operating system), and in both cases this
also produces a remarkable degradation at the level of the performance of usesgsoce

In a certain wayprited has also the same problem (loss of performance due to its 32MB of
main memory), but the relative loss is much lesser since in no caseaeés®.5 MB/s.

The rest of the computers have a main memory of 64 MB or more and, thus, there is no
need to recur to th@vap space.

Also, from Fig. C.7:
There are clear performance differences among the different computerseebetw
slightly more than 0.4 MB and slightly more 0.8 MBJ/s.
The best obtained is slightly more than 0.8 MB/s for three of the computers (takng i
accountcetadfomec?, represented bgf1)
The best performance obtained for each of the computers is accomplished wshgames
length of order of 10bytes or more (represented with 6%1ifi the figure).

C.7.2 Performance with Routing Between pvmds and
Representation Translation

Fig. C.8 shows the results obtained in terms of communication absolute times.
Comparatively with those shown in Fig. C.6, the results of this alternatieesianilar in
general terms: latency and absolute times, all of which gives us an idea ohtivelyelow
importance of the way data are coded (or the representation translation, in this case
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Figure C.8: Times wittPvmDefault Routing and Translation of Data Representation.

Fig. C.9 shows the same results but in function of the MB/s according to the
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communication times and the quantity of bytes transmitted in relation tortbgssage
length. It can be noted that the decrease in the memory requirements make the 32 M
machinestflcara, for instance) performance not fall so drastically when messages are of
10’ bytes, because they make lesser use ofsttap space and, thus, the impact on the
memory handling speed is smaller.

In addition, it can be observed that, as direct impact of the representatitsiatian,
performance of machines communicating the same data representation can betéxen
Since procesping is always assigned to a PC with Linupr mamar ca), the performance
is better with the rest of the PQ#dar a, fourier andcfl), in comparison with the previous
alternative.
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Figure C.9: MB/s witiPvmDefault Routing and Translation of Data Representation.

Perhaps, the most significant point in both cases (XDR codification and espati®n
translation, which is the only thing that has varied until now) is the really loiop@ance

of computersofia, which does not reach 0.6 MB/s in any case. This low performance is
stressed when it is compared to computers whose relative processing speedyeaal
times slower, like computepited, cetad andparis.

C.7.3 Performance with Routing Between User Tasks and
Codification

Fig. C.10 shows the communication times obtained when user tasks communicetiy dire
using the TCP protocol, and with XDR (PvmDataDefault) data encoding. Thisatiee

of message transmission is what the PVM documentation recommends when cemputer
(and their ways of representing data) are heterogeneous.
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Figure C.10: Times with Routing among Tasks, BaghDefault Encoding.

Comparing the results of Fig. C.10 to the previous, there are some slight ddés,esuch
as:
the latency time is lesser (closer to 1ms than to 10ms),
in logarithmical scale, for small message times (up to 1000 bytes)petars do not
present significant differences. Once again, it should be noticed that théthogaal
scale masks many differences that can be then clearly visualized in terrBgsof M

Surprisingly, Fig. C.10 shows the excessive communication time for mesgaggter than
1000 bytes imprited and insofia. Even in logarithmical scale, the difference is remarkable,
and it is really interesting that, in principle, it appears with two wael computers (in
terms of design) in terms of software or hardwapgited and sofia: one a Sun
SPARCStation 2 from the beginnings of the '90s and the other, an IBM RS/6000 from the
end of such decade.

The last of the listed conclusions has too much relevance, since it thoroughlydictstra

the documentation and reports related to PVM. In this sense, the PVM atistall the
pingpong programs, and the potential reasons for which this might have happened were
verified, though no significant reason was found in relation to the PVM library.

Similar tests of TCP connections between compupensnamarca and sofia showed a
similar performance at user process level. This implies that PVM commntioncautines
show nothing but what occurs at connection level between computers. The similarity (
terms of communication performance) between compusefia and prited makes us
assume the same behavior at TCP connection level.

Fig. C11 shows the same results but in function of MB/s. Now the differences among

computers can be more clearly seen, specially with message lengttsrgitean 1000
bytes.
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Figure C.11: MB/s with Routing among Tasks, &wdDefault Encoding

C.7.4 Performance with Routing Between User Tasks and
Representation Translation

Fig. C.12 shows the communication times obtained for the Routing of tasks (TCP) and
with data representation translation.
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Figure C.12: Times with Routing among Tasks and Translation of Representation.
Fig. C.13 shows the same results in function of MB/s obtained among user tasks

communicated to the PVM functions, except as regards the translation of data
representation, which is independent of PVM.
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Figure C.13: MB/s with Routing among Tasks and Translation of Representation.

With this alternative, and for the first time, 1 MB/s of bandwidth is outpenied for
communications among computers with the same data representatiorpuBothmar ca,
where procesping is always allocated, anlibsrap, tilcara, fourier andcetadfomecl (and
cetadfomec?) are PCs (though with different processors) with Linux operating systam. O
the other hand, messages can be sent with PvmDatalnPlace, which impliegpydnc
buffers, nor codification that may increase the final size of data to be tittednover the
computer interconnection network.

The information given by these figures is very similar to what the two prestiosv (Fig.
C.10 and Fig. C.11), both in absolute values and the relation existing among comfuters
also shows (and, in this sense, proves in some way the previous results) thdifigesce

in performance existing between the compuperted andsofia with respect to the rest.

The very low performance girited and sofia with this communication alternative (TCP
routing of tasks and translation of representation), among PVM tasks, makesililpde

definitively discard that the problem might be codification. On the other hand, thegpnobl
seems to be the TCP communications and/or PVYM communications with TCP routing.

C.7.5 PVM Experimentation Conclusions

If it is expected communications to the maximum possible performance, consutiter
should be specifically analyzed, since it should have a much higher communication
performance. In the particular case of messages with direct routing, tferrpance
obtained is actually much lower than the expectable and, thus, it is possiloel tanferror

in the way TCP communications are handled in the operating system or in tersosef
computers’ TCP connection configuration (at operating system level). Ins#nse, the
experimentation did nothing but show that there might be a (serious) problem in the
performance due to a software problem.
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In addition, in the context of the performance, it is interesting to recall #hlathe
computers have the same performance as regards communication hardware. dmgs me
that all the computers, independently of the manufacturer, have Ethernet 802.3 enterfac
(NIC), and thus they all would be capable of communicating at 10 Mb/s, which isplie
theory 1.25 MB/s (1.25 x 2 bytes per second). We can suspect certain sustained
performance loss given by the overhead imposed by the operating system and its, buffe
processes, etc., plus all related to PVM in itself; however, we do not cotmtawa priori
guantified idea of the performance loss implied by all of this overhead. In consequence
knowing the maximum possible performance of communications for user tasks mag alway
remain pending if the performance is only monitored with the pingpong method wké tas
using PVM.

Going back to the initial objective ofi and 3 value estimation, there are some very
important conclusions: the range of the values and the heterogeneity of the values.
- Depending on the message communication alternative chosen, latency variesrbétw
and 10 ms.
Also depending on the chosen alternative (and excluding the particular cagesedf
and sofia), the data transference rate (or bandwidth) ranges from little less than 0.5
MB/s and little more than 1 MB/s.
Whatever the chosen alternative is, both the latency and the transfer ratel depthe
computer.

The latter conclusion is quite discouraging because a subsystem, which is hoowgane
theory like that of the computers’ interconnection, “becomes” heterogeneous when it i
regarded from the point of view of user tasks which make up a parallel application.

The immediate consequence of communication time heterogeneity in Ethernefrksetw
with PVM is: a message that should reach any process in other processor sarttee
period of time, it will now reach it in a period of time which depends on the oragid
target processors, beyond the solution adopted to solve differences in data repesentati

In order to prove the results obtained with PVM, a new set of experiments igngeisto
improve precision as regards:

o andp for user processes;

heterogeneity, or not, of communications;

the particular cases of low performancented andsofia.

C.8 Experimentation with the Linux ping Command

The ping command (at least in it&rsion of Linux operating system) is versatile enough to:
Measure communication times at user application levels.
Generate “messages” of different lengths.

In fact, any user without special permission can rungimg command, which generates a
user process that producespangpong package per second at ICMP (Internet Control
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Management Protocol) protocol level. The package round-trip time is reported pinthe
command itself, reason why no instrumentation is addedpifigpong package length can
be varied using a command option, and this in turn allows us to watch the intercomnect
network performance in function of the quantity of transferred data, considehnimg t
pingpong package as a message.

Fig. C.14 shows the communication times involved for different number of bytes
containing thepingpong packages.
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Figure C.14: Linux ping Times.

It is necessary to make some explanations as regarpgsgjpeng packages lengths as well

as the last identifier appearing as “3/6 x 10"4”. The whole ICMP package mustdikesm
than 64 KB, like IP packages, and thus what can be measured with the ping command
reaches this transferred byte quantity.

In the particular case of computers with Sun 4.1.x (BSD-based Sun OS) opesatiemns
prited andcetad - for some reason undocumented -, do not work on ICMP of more than
32 KB and thus, with these computers, pinpongs were carried out with a maxirnarofsi
30000 bytes (then multiplying the time by two in order to equalize them with thegtiof

the rest of the computers).

From the information gathered in Fig. C.14:

- The messages latency time) (for user tasks (which communicate themselves with the
ICMP protocol) is of order 1ms. Like in PVM, the latency time depends on the
computers, though the variation range is quite smaller.

- Just after messages of 1000 bytes or more, time starts to be proportional tatdhe da
guantity transferred. This means, within this context, that up to that “age$dength
(in this case, pingpong packages), the latency times is large enough toaber dhan
the data transmission time.

Fig. C.15 shows the same results but in terms of MB/spwigpong package data
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transference. We can clearly notice the differences between the cospatgally masked
by the logarithmical scale of the times of the previous image.

1,2

N N
1 S

.
0,8 i S I : N
o 016 5 N[ | S N[

= . .
074 NN | N ; [ N ; [

7 N (N o~ (N o~
0,2 — — =

N AN N

: - =

0 ol : 8 8

10 100 1000 3/6 x 104
Number of Bytes
[ prited [l cetad [l Josrap (H tilcara cfl g fourier f paris [ | sofia

Figure C.15: Linux ping MB/s.

As with latency, the data transfer rate is not exactly the same for @alleofmachines, but
the variation range is much smaller than that obtained when processes comr@unic
themselves in PVM. In addition, in terms of data transference rate:
The maximum obtainable with ICMP is almost the physical, with which thesdbfice
between this maximum (with the ping of Linux) and that obtained in PVM is due to the
PVM overhead.
The particular case of low performance of computerged and sofia is not due to
hardware or the protocols closer to the hardware (like IP and ICMP).

Like with the experimentation with PVM, just after message sizes demod0d bytes
(30000 bytes forprited and cetad, and 60000 for the rest), a better performance of
communications is obtained. However, with these experiments, important irfformsa
added complementing the contributions of the initial experimentation carried bt w
PVM.

C.9 Conclusions of PVM and Linux ping
Experimentation

From the results obtained in PVM and with the ping command of Linux, it is worth
attempting an intermediate. It is very likely that we will not get a perfance exactly the
same as the observed with the ping command because:

With the ping command, differences in data representation are neither taten i

account nor solved.

Communication routines outperforming a 64 KB message length must be implemented.
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In other words, and unfortunately, not always the messages to be transfetneskive
processes can be encapsulated in a single communication protocol packageodioser
hardware like ICMP.

However, it does not seem that these two constraints, though strong, will make PVM have:
Such low communication performance, like in the cas@roted and sofia with direct
routing.
Such heterogeneous performance depending on the computers among which data are
transferred.

In some way, on the one hand, the ping command seems to give a really optimigh\adrsi

the communication network performance, and on the other, PVM seems to havéya real
high overload. This large PVM overhead produces a high decrease of the intercomnecti
network performance and this reduction of the performance is proportional to the
computer’'s relative speed. In consequence, the communication performance start
depending on the communicating computers and as heterogeneous as the computers’
heterogeneity.

Due to this, it is natural to seek an intermediate solution as regards tfogrpance of the
computer interconnection network. This implies having better and more homogeneous
performance at the level of user parallel application processes (accordinfeto
communication hardware) than that obtained with PVM, though sometimes it ithaot
obtained with the ping command.

In addition, it is necessary to recall that, even though the whole experititenand thus
the conclusions reached at) is based on phmgpong method, i.e. on point-to-point
communications between two and only two processes:
the original problem to solve is that of matrix multiplication,
the algorithm developed to multiply matrices in computers networks is based on
broadcast,
it is important to count with an efficient implementation of broadcasts dukdm wide
use in parallel programs [11].

As it can be concluded from the experimentation shown in this chapter, the pgnoirto-
communication performance with PVM is not fully satisfactory. Consequethitye is no
reason to assume that the performance of collective communications, whittearest
important for the application under analysis and for many others, is indeed satisfactor

For the above reasons, the next chapter will explain the development and the pertarmanc

obtained in principle for a collective broadcast communication routine that caxtéeded
to a collective communication library.

C.10 UDP-based Broadcasts

The main performance objectives for the development of a broadcast routine differant f
that provided by message-passing libraries like PVM and MPI implementateons ar
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Improving the performance obtained from the user processes in relation to thaedbta
with “general purpose” libraries, such as PVM.

Obtaining performance homogeneity according to the hardware homogeneity, which, in
the case of PVM, is not verified in the experimentation.

In addition, using PVM, the ways of sending the same message to more than ate targ
process are two:

Multicast routingjpvm_mcast().

Broadcast routing in a groupym_bcast().
And the implementation of both routines is based on multiple point-to-point messages
That is, both pvm_mcast() and pvm_bcast() imply that, as minimum, the samagaeass
sentm times from the origin computer (where the process sending the message is being
run) to them machines where there is at least one target process of the message. If, for
instance, a broadcast or multicast message has five receptors and eaceokteving
processes is being run in a different machine (and different from the machine wiee
process sending the message is being run), the total time of the message will be
approximately equal to five times the time of the same message, as dgré gent to
another process run over another machine. For these point-to-point communications among
machines, the same routines with which the experimentation was carried outare use

In principle, a routine for broadcast messages veitbeptable performance in Ethernet

networks is required, and where acceptable can be defined according to:

- Communication time absolute values closer to that provided by the hardware than those
observed in the experimentation with PVM.
Scalability in terms of machine quantity, since when we take advantage othleengt
network broadcast capabilities, the same message can be sent and rexe\aesimany
computers as are connected. It is evident that there will be a penalization depending
the quantity of computers receiving the same message due to the synchronization and
maintenance of the transferred data reliability; however, this penalizatiould be far
from the repetition of the same message as many times as different cospliterd
receive it.

Both the performances of pvm_mcast() and pvm_bcast() are not acceptable and, thus, the

PVM library would be of no use for broadcast messages requiring the matrixpfiaation

algorithm in parallel. At this point there are several alternatives, drad ttvo most

important are:

1. Using another message-passing library, such as some MPI implementetich, is
usually focused for this type of parallel architectures.

2. Implementing a broadcast message routine (and, eventually, a whole librargctivell
communications) in order to make explicit use of the Ethernet networks’ broadcast
facility.

The use of a message-passing library has, in principle, a fundamental draintracthe
point of view of the performance or of “prediction” of the good performance of broadcast
messages. In the specific case of MPI, it is clear that the performdepends on the
implementation. More specifically, the implementation will be what deiees the degree

of utilization of the Ethernet network characteristics for broadcast rgessé#n this sense,
MPI and, in particular, all its implementations share some degree of uimtgrta terms
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of broadcast messages performance, with the rest of the message-passirngs)
including PVM. The difference in this case are the specific experimentshwhére carried
out and determined the characteristics of the broadcast (multicast) gesgsarformance
for PVM and not for the rest of the libraries. In fact, it is rather hard torojzteé message-
passing libraries to meet the characteristics of the Ethernet network since

In general, libraries are, one way or the other, proposed as standards for message pass
parallel machines and, thus, it is pointless to orient them to a specific type of
interconnection network. In fact, both PVM and MPI have been implemented for
different types of parallel machines and, hence, it is pointless to orient th@orato
Ethernet interconnection networks.

In general, libraries provide a large quantity of communication routines. Ekengh

in theory it can be asserted that with the primitives send-receive for pmindint
processes communication are enough, it has also been concluded that theravedeést a
range of communication routines considered useful and even necessary in sese cas
Perhaps, the clearest example with this respect is the very definitiomeofViPI
standard. In this context, it is very hard to orient or optimize one or one type of
communication routine for one or one type of interconnection network without
producing an excessively expensive and/or too specific library (in terms of
development, maintenance, etc.).

For these reasons, broadcast message routine between user processegwifrdassgn
and implementation premises has been chosen to be implemented, so that:

It takes advantage of the very broadcast of Ethernet networks, and in this way, it i
optimized in terms of performance. Since the algorithm exclusively depends on
broadcast messages, when the Ethernet network broadcast is used up, thexalis a r
good expectation in terms of scalability because the communication timeected to
remain constant and do not increase proportionally to the quantity of computers used.
It is simple enough not to impose a too heavy load in terms of implementation and
maintenance. In addition, it is clear that simplicity per se largely duuis to the
optimum performance. On the other hand, the proposal is specific enough to make the
implementation simple.

It has the maximum possible portability, in order to be used, whenever possiblaneven
the context of other interconnection networks (leaving aside Ethernet).

It is implemented and installed from the user mode, without changing the operating
system (the kernel) and without needing special permissions (superusenoimally
accepted that the best results in terms of performance are obtained adaptkegriel
and/or with the possibility of managing the process priorities, such as in [FIL4]
These possibilities are discarded since:

- In general, free-use libraries do not use these characteristics, antwaugd be
like changing the parallel software development context. Basically, a user w
has always used PVM never had/have to neither obtain special priorities nor
change the operating system in itself.

- The original proposal is directed to installed computer networks and each
computer does not thus necessarily have as single or main objective parallel
computing. In fact, we may find the case of different administrators fon efc
the computers to be used in parallel and this produce, at least, a multiple
administration task which, in general, is not easy to solve.

It could eventually be extended to a whole collective communication library) asc
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those proposed by [2] [1] [3], though specifically oriented to Ethernet intercoiomect
networks.

Most (if not all) the previous premises are fulfilled when all the design and implementation

of the broadcast routine is based on the UDP protocol standard (User DatagracoRrot

[8] over IP (Internet Protocol) because:
UDP allows sending a same data or set (package) of data to multiple tatgetera
application level.
Such as verified in all the machines used, the UDP protocol implementatics daket
advantage of the Ethernet network broadcast capacity.
In principle, it seems reasonable that the broadcast directly implemesiteariaof the
UDP protocol has a better performance than the implemented by a user. If inldn AT
network, for instance, it is possible to use UDP, it is very likely that the Wbdadcast
will be better (in terms of performance) than that potentially implemeffitech user
processes. Even though the performance is not taken into account, whenever ttere exi
a UDP protocol implementation we will be able to use the proposed broadcast,
independently of whether the interconnection network is Ethernet or not.
The user interface provided by the sockets is simple enough and widely extended to a
the UNIX versions, so as to simplify the implementation of the broadcast ro@uss
when problems related to process synchronization (in the same or in different
computers) and communication reliability are to be solved.
UDP, TCP, and IP protocols are easily usable from the user processesstanlédze
standard computers of the installed local networks.

In brief, a new routine of broadcast messages based on UDP and portable to, at least, all t
UNIX versions used in all the local networks in which the experimentatiomiiged out.

With this broadcast messages routine the same experiments were cairied the PVM
communication routines. |Initially, the results of point-to-point communications
(“broadcast” or “multicast” message using a single receptor procesg)resented; and
finally, the results of broadcast messages with pvm_mcast() and pvm_lwfaB¥{M and

with the proposed UDP-based routine are also shown.

C.10.1 A Single Receiver (Point-to-point Messages)

In order to compare the results with those obtained by the experimentationPWith
point-to-point communication routines and with the Linux ping command, the broadcast
message routine was used as single receptor process. The resultsgeterrihe
communication times appear in Fig. C.16. It should be noticed that these comrmamicat
times between two machines may not be optimal since the communication routine is
designed for broadcast messages involving more than one computer receivingasessag
All the same, it can be used for comparing the results shown in

Fig. C.14 with the communication performance according to the ping command (ICMP

protocol).

Fig. C.12 with the PVM communication performance with Routing of tasks (TCP

protocol) and data representation translation.

Fig. C.8 with PVM communication performance with routing among PVM processes

(pvmd, UDP protocol) and translation of data representation.
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Figure C.16: “Point-to-Point” Times with UDP-based Broadcast.

Comparing these results with those of the Linux ping command (Fig. C.14):

Latency is quite higher, and it is verified that, at least up to the tramsée of a hundred
bytes, the latency time will be that dominating the total time. On the other hiargd,
confirmed that the communication latency depends on the machines involved in the data
transference.

Communication time is similar to that obtained with the Linux ping command for 30000
(cetad andprited workstations), and 60000 bytes (the rest of the computers).

Comparing these results with those of the PVM point-to-point communication routines
(Fig. C.8 and Fig. C.12):

Latency is similar to that obtained with PVM, and in many cases is almost alentic
Computerscetad and prited do not show any performance anomaly for any size of
message. This confirms that the problem is due to the configuration and/or the
implementation of the TCP protocol in these computers.

At least from the message length of 6000 bytes, the performance of communidations
homogeneous, such as expected from the point of view of the communication hardware.
The performance with the UDP-based broadcast is rather higher than that dhtétime

the PVM point-to-point communication routines. Even with the logarithmicalescal
communication times are really close to the optimal, as if there were mheag of the
different layers of the software involved (operating system, broadcast rpatmg For
instance, the communication time of®lfytes messages is really close to a second (or
1000 milliseconds, such as shown in Figure C.16).

Fig. C.17 shows the same results in terms of asymptotic bandwidth, where vodeaaly
verify that the results are highly satisfactory in terms of performance.
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Figure C.17: MB/s “Point-to-Point” with UDP-based Broadcast.

With these results of point-to-point communications:

- Almost all of the communication hardware performance at the level of parallel
application processes. The overhead of all the intermediate software ldyes not
almost affect the final performance among processes.

- In the absence of collisions, the performance is independent of the communication
network and independent of the involved computers. The computer heterogeneity with
their relative differences in terms of computing capacity is not trarglditee in PVM,
into “heterogeneous performance”.

C.10.2 Broadcast Messages

The final objective of broadcast communications is not data transference from onegproce
to another, but the transference from a process to a certain quantity of po@ssig in
different computers. It is for this reason that we have to verify, at ledst t@sts, that
broadcast messages will be sent among processes with near-optimal pederara
relatively independently of the quantity of receptor processes, or computers invalved i
broadcast messages.

Fig. C.18 shows the communication times involved for different lengths of broadcast
messages and different quantity of receptors assigned in different mactiiith the aim

of comparing in a better way the different message lengths, we have chodsmdlem

in the same graphic instead of displaying a graphic for each message [®agtrated with
vertical point lines, over the axis, the broadcast message times are shown for different
quantity of receptors (machines). The PVM results shown are independent of the lise of t
routine pvm_mcast() or pvm_bcast(), because they have a similar performance.

It can be noticed that the time with PVM routines is kept quite independent of theageess
length of 8, 100 and 1000 bytes, respectively. In fact, it depends much more on the
machines involved. For these message lengths, the proposed UDP-based routine uses
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relatively constant times and independent of the quantity of computers involved. For
broadcast messages of 60000 and 1000000 bytes, the time is directly proportional to the
guantity of receptors when the PVM routines are used. Once more, when the routine
directly based on UDP, the time (apart from being quite better than the besd\f B
relatively constant and independent of the computers involved.
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Figure C.18: Broadcast Times with PVM and based on UDP.

Fig. C.19 shows the same results but in terms of MB/s and, thus, some detaiiasiked

by the logarithmical time scale of the previous graphic. For the computing of the
asymptotic bandwidth or transference rate or MB/s of a broadcast messagdowie
recall that the message is unique, the same data should reach multipls tadgpendently

of the fact that the implementation is carried out with multiple point-to-poiessages or

in some other way.
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Figure C.19: MB/s of Broadcast with PVM and based on UDP.
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As previously explained, the communication time is dominated by the latenaastt for
messages up to 1000 bytes. In consequence, the performance in terms of bandwidth or
transference rate is quite poor using PVM or the UDP-based broadcast routine. For
messages of 60000 bytes, we can easily notice that the performance, whenousimesr
provided by PVM, depends on the quantity of receptors and relatively constant, when using
the UDP-based routine. The variations in this last case are basicallg bagke fact that,

for this message length, the latency of each machine affects the totel dinthe
communications. For messages of bftes, the latency of each machine is already lesser
than the data transference time and, thus, the performance has less vaniasymptotic
bandwidth. In the case of PVM, once more, the performance is proven to decrease as t
guantity of computers used increases and, thus, we can assert that the broadcast
implementation uses multiple point-to-point messages.

C.11 Broadcasts in the LQT Local Area Network

Experimentation in LQT is similar as regards broadcast messagesantecharacteristics
appear: performance depends on the quantity of computers involved for PVM routines, and
almost constant performance for the proposed routine directly based on UDP. Aldte w
occurs in CeTAD, heterogeneity is lower since, for instance, there areffevedices in
terms of data representation, because all available computers are P& salikis CeTAD,

the quantity of computers is lower and thus the maximum performance degradatian (whe
all computers are used) is lower as well.

One of the most remarkable differences yielded by the LQT experimentati@haition to

that of the CeTAD refers to the point-to-point messages latency. Since meachie quite

similar and performance differences as regards computing capacity aee resiricted,
message latency is much more limited in terms of absolute value ranfget ithis makes
communication performance among user processes even more independent, since now not
only is the asymptotic bandwidth closer to the interconnection network hardw@asg

the UDP-based broadcast messages) but also the total communication tmehisloser

to what can be estimated with the hardware values.

C.12 Broadcasts in the LIDI Local Area Network

As expected in LIDI local area network, communication performance isrbgitiee the
communication network is a 100 Mb/s Ethernet instead of 10 Mb/s, like those of the
CeTAD and LQT. Even so, experimentation proves that for PVM the broadcasageess
time depends on the quantity of computers involved. It also proves that broadcast message
time relatively depends on the quantity of machines involved when the directly UDdP-base
routine is used.

It is very interesting how latency influences the total communication timenwihe
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hardware bandwidth is ten times greater. Since most of the latency is due awdrload of
factors external from the very Ethernet interconnection network (operatistgrsy
protocols, communication routines among processes, etc.), the absolute lateacis ti
quite independent of the bandwidth capacity. Multiplying by ten the bandwidth of the
Ethernet network, the latency time “weight” is implicitly multipliech@ugh no necessarily

by ten) in the total time of the communications. The quantification of these tastmuld

be computed at least with the design of specific experiments, which are the stope of

this Appendix.

The impact of the latency on the final time of communications is definitely ingport
taking into account the tendency to use networks with greater bandwidth capgdkttye

same, it is expected that the latency at interconnection hardware leNdbenieduced
proportionally to the bandwidth increase and that the overhead imposed for the user
processes will be reduced.

References

[1] Bala V., J. Bruck, R. Cypher, P. Elustondo, A. Ho, C. Ho, S. Kipnis, M. SniCLCA
Portable and Tunable Collective Communication Library for Scalable Pl€alaputing”,
Proc. of the 8th International Conference on Parallel Processing, IEEE, April 1994.

[2] Banikazemi M., V. Moorthy, D. Panda, “Efficient Collective Communication
Heterogeneous Networks of Workstations”, Proc. International Conference olePara
Processing, pp. 460-467, 1998.

[3] Barnett M., S. Gupta, D. Payne, L. Shuler, R. van de Geijn, J. Wattsrfimicessor
Collective Communication Library (InterCom)”, Proc. of the Scalable Hgitformance
Computing Conference '94, Knoxville, TN, USA, IEEE Computer Society Press, pp. 357-
364, May 1994.

[4] Chiola G., G. Ciaccio, “Lightweigth Messaging Systems”, in R. $ayEd., High
Performance Cluster Computing: Architectures and Systems, Vol. 1, &dtll, Upper
Saddle River, NJ, USA, pp. 246-269, 1999.

[5] Ciaccio G., “Optimal Communication Performance on Fast Ethernet GAIMMA”,
Proceedings Workshop PC-NOW, IPPS/SPDP'98, Orlando, FL, LNCS No. 1388, Springer
pp. 534-548, April 1998.

[6] Institute of Electrical and Electronics Engineers, IEEE StandardBfoary Floating-
Point Arithmetic, ANSI/IEEE Std 754-1984, 1984.

[7] Pacheco P., Parallel Programming with MPI, Morgan Kaufmann, Samdco,
California, 1997.

[8] Postel J., “User Datagram Protocol”, RFC 768, USC/Information Scgehtstitute,

254



Appendix C: Communications in the CeTAD Local Aidetwork

Aug. 1980.

[9] Postel J., “Internet Protocol”, RFC 791, USC/Information Sciences Instityie 1981.

[10] Sun Microsystems, Inc. XDR: External Data Representation Stan&&@G. 1014,
Sun Microsystems, Inc., June 1987.

[11] Wilkinson B., Allen M., Parallel Programming: Techniques and Applicatiossg
Networking Workstations, Prentice-Hall, Inc., 1999.

[12] GAMMA Home Page http://www.disi.unige.it/project/gamma/

255



