Chapter 2: Matrix Multiplication

Almost from the beginning of parallel processng applicaion to numerica problems, different
methods for parallelizing matrix multiplication have been studied, designed, implemented and
experimented.

From the point of view of the problem in itself, it is useful to have an optimization of this matrix
operation since it is aways possble to find it in the different applications to be solved in the
numericd environment. Thus, the fad that this operation is optimized implies optimizing, in turn,
apart of several applicaionsinwhich it is necessary to multi ply matrices.

From a point of view closer to the reseach, this problem has many charaderistics that make it
suitable for extensive and intensive study. The two most important charaderistics are its simpli city
andthe posshility of extendingitsresultsto ather similar operations.

In this chapter, some important aspeds of this operation will be included for its parall eli zation,
together with the outstanding charaderistics of the dready developed parall eli zation algorithms.

Parallel Computingin Locd AreaNetworks Chapter 2: Matrix Multiplication

2.1 Matrix Multiplication Definition

The definition of the matrix multiplicaion operation is very simple, al of which simplifies
its understanding. Given a matrix A™ of m rows and r columns, where eat element is
denoted as a; with 1 <i <m, and 1 <j < r; and a matrix B™" of r rows and n columns,
where ead element is denoted as b with 1 <i <r, and 1 < < n; matrix C resulting from
the multiplicaion operation of A and B matrices, C = A x B, is such that ead of its
elementsisdenoted asc; with1<i<m,and 1< <n, andit is computed as foll ows:

Ci,:Z a X by (2.1
k=1

As with most of linea algebra basic operations, the necessary number of operations
between scdars (or "flops' in [59], meaning "floating point operations") for the result
matrix computation can be known (computable) in an exad manner. Given the previous
definitionfor matrix multipli cation exadly

cant_op= mxn x(2r-1) (2.2

operations (multi pli cations and sums among scdars) are required. For simplicity's sake, all
the analysis is generally carried out in function of square matrices of order n, and in this
way, the number of basic operations between scdarsis exadly

cant_op = 2n*-n? (2.3

This number of operations is usually cdled matrix multiplicaion complexity, and
determines the running time necessary to be solved by a computer. In this context, it isaso
common to find that matrix multiplicaion is O(n®) ("of order n*'), emphasizing the faa
that the dominant term in Eq. (2.3) is of cubic degree leaving aside muiltiplicaion
constants and all the terms of lower degree

It is worth to mention that this number of operations is independent of the algorithm and/or
the computer used for solving the problem. In this sense, it is also important (though not
necessrily "essntial” in this case) to differentiate this number of operations from, for
instance, thaose performed during the exeaution of a sequential program based normally in
the assgnment

Cj = Cj + ai X by

which implies the exeaution of 2n® arithmeticd operations between scdars. This is an
immediate instance that the programs do not necessarily solve the problems with the
minimum number of operations. As stated before, this example do not present many
problems as regards total running time, and it isindeed useful for showing that the number
of operations solved by a computer is not necessarily the minimal. This fad shoud always
be considered at the time of asesdng the performance of computers for the solution of a

17

Chapter 2: Matrix Multiplication Parallel Computingin Locd AreaNetworks

particular problem.

The case of parallel computers has to be handled even more carefully since, many times, it
is advisable to replicae the computation (and thus, to increase the number of operations
effedively solved by processors) to avoid communication or synchronization that would
take more running time than the replicaed computation. In the analysis of the performance
to be caried out in the experimentation, the number of operations in Eq. (2.3) will be used
as a reference value to avoid improper conclusions derivable from the number of
operations exeauted in the procesor(s).

2.2 Linear Algebra Operations

Almost from the very beginning of computers uitili zation, the developed software was
meant to achieve the highest quality in terms of key indexes. performance, reusability and
portability. In this sense, the areain charge of solving numericd problem in general and
linea algebraproblemsin particular has not been an exception.

From a long time ago, in the context of linea algebra operations, severa libraries have
been defined, propased and developed in order to establish the most reduced and general
set of routines or basic operations making use - most of the times (if not always) - of linea
algebra applications. One of the first examplesis EISPACK [46], based on a set of routines
detailed in[123.

The library that has become the de fado standard in the areaof linea algebrais LAPACK
(Linea Algebra PACKage), developed at the end of the '80s [36] [7] [8]. Apart from
having taken advantage of the previous experiences such as EISPACK and LINPACK,
together with LAPACK (or at least with alogicd development related to this library), two
fundamental concepts are added in terms of the library spedficaion's transparency and,
also, as regards the maximum locd optimization likelihood (acwrding to the computing
architedure). These mncepts are:

Basic operationsin levels.

Block agorithms.

In fad, bath concepts are closely related, but the division of basic operations in levels is
made from the paint of view of LAPACK considered as a library for solving linea algebra
problems. On the other hand, block algorithms are a consequence of admitting that the
architeaure of most of the computers (independently whether they are parallel or not) hasa
hierarchicd memory structure where the levels closer to the same processor (cade levels 1
and 2) shoud be exploited to the utmost in order to adchieve the maximum processng
capability.

2.2.1 BLAS: Basic Linear Algebra Subprograms and Performance

From the subroutines included and defined in LAPACK, a set of subprograms has been

18

Parallel Computingin Locd AreaNetworks Chapter 2: Matrix Multiplication

recognized as basic. These subroutines have been cdled Basic Linea Algebra
Subprograms (BLAS) [80] [81] [43]. BLAS is generally divided in threeclasses (known as
levels) in function of the quantity of data over which they operate and in function of the
operations quantity required for ead of them. There aethreeBLAS levels[46]:
Level 1 (or L1 BLAS): for subroutines operating between vedors, suchasy =ax +y.
Level 2 (or L2 BLAS): for subroutines operating with matrices and vedors, such as in
the equationy = aAx + By.
Level 3 (or L3 BLAS): for subroutines operating with matrices, such asC = aAB + 3C.

where A, By C represent matrices, x andy represent vedors, and o and 3 represent scaars.

Beyond the utility of this clasgficaion for the charaderization and identificaion of the
operatlons it was establi shed considering that:
The amount of data over which level 1 subroutines operate is of O(n), where n
represents a vedor length, and the number of basic operations between scdarsis also of
O(n).
The amourt of data over which level 2 subroutines operate is of O(n?), where n
represents square matrices order (row and column quantity), and the number of basic
operations between scdarsis aso of O(n?).
The amourt of data over which level 3 subroutines operate is of O(n®), where n
represents sgquare matrices order (row and column quantity), and the number of basic
operations between scdarsis aso of O(n®).

Thisimplies that, on the one hand, subroutines included in Level 3 BLAS are the ones that
have more requirements in terms of processng capability. In fad, the differencewith Level
2 BLAS is so grea -O(n®) vs. O(n?)- that most of the times (if naot al) al the necessary
optimization can be achieved by optimizing Level 3 BLAS. On the other hand, it is evident
that, as regards subroutines optimization, those of Level 3 BLAS are the most appropriate
since they have greaer computing requirements than the other two levels. It is generaly
considered that [46]

L1 BLAS subroutines canna adieve a high performance in most of supercomputers.

Still, they are useful in terms of portability.

L2 BLAS subroutines are spedally appropriate for some vedoria computers (in terms

of performance) though nat in al of them due to data movement impased among the

different levels of the memory hierarchy.

L3 BLAS subroutines are the most appropriate for achieving the maximum performance

in current supercomputers, where the memory hierarchy plays aredly important role in

the performance of all the acceasto the data processd in the CPU/s.

In fad, even though LAPACK isimplemented (or might be diredly implemented) in terms
of L1 BLAS [46], it is currently designed for using to the utmost L3 BLAS [LAPACK]
because these subroutines are almost the only ones with which a high performance can be
achieved (closer to the maximum performance of ead processor used) in the
supercomputers. Thus, there is no doult that, in terms of performance, it is esential to pay
spedal attention to subroutines defined as Level 3 BLAS.

Why are Level 3 BLAS subroutines spedally appropriate for optimizing? The answer is
related to the method used for implementing the algorithms - known as block agorithms

19

Chapter 2: Matrix Multiplication Parallel Computingin Locd AreaNetworks

[42] [5] [85] [104] [20] [122. These algorithms optimize the accessto memory since they
maximize the operations quantity caried out for ead referenced datum. In general, they
organize the computation so that a data block is accaled and, thus, isimplicitly assgned in
cade/s memory. The necessary modifications (iteration order, "loop unroll” levels, etc.)
are caried out to exeaute immediately al (or most) of the operations in which that data
block is invalved and, thus, used to the utmost. In this way, the effedive memory time is
reduced since the "cade hit" -or the number of times a datum referenced from the
procesor isimmediately foundin cadie memory- isincreased to the maximum.

Block algorithms can be adapted to ead structure (or, more spedficdly, to eat
cade/memory levels hierarchy) and, for this reason, the term transportable is often used
instead of portable. There is a tendency to "adapt" routines with greaer optimization
chances or with higher potential to adhieve the maximum possble performance to the
underlying architedure [46]. Most of the companies that design and commercialize
procesors also provide the complete BLAS-defined subroutines (and even others simil ar)
so that they use to the utmost the processng capability [CXML] [SML] [SCSL1] [SCSL2].
These subroutines are optimized for processors even at the procesor's language level

(assembly language) and, thus, the effort and the cost invested in its implementation
represent also a marker of these subroutines importance

2.2.2 L3 BLAS and Matrix Multiplication

Originaly, L3 BLAS spedficaion is caried out for the FORTRAN language and the
defined/included subroutines are [42] [BLAS):

a. "General" matrix products (subroutines ending in GEMM):
C <« aop(A) op(B) + pC
where op(X) can be X, X" o X"

b. Matrix products where one of the matrices is red or symmetricd complex or hermiticd
complex (subroutines ending in SYMM or HEMM):

C -« aAB+f3C a C—aBA+C

where A is symmetricd for SYMM or hermiticd for HEMM and islocaed to the left or
right of the multiplication depending on a subroutine parameter (SIDE).

c. Matrices products where one of them is triangular (subroutines ending in TRMM):
B - aopA)B a B« aBoplA)

where A is atriangular matrix; it isto the left or right of the multipli cation depending on
asubroutine parameter (SIDE), and ogA) can be A, AT 0 A",

20

Parallel Computingin Locd AreaNetworks Chapter 2: Matrix Multiplication

d. Rank-k updhte of a symmetricd matrix (subroutines ending in SY RK):
C~0AAT+BC o C - aATA+fC

where C is symmetricd and A is to the right or left of the multiplicaion by AT,
depending on asubroutine parameter (TRANYS).

e. Rank-k update of ahermiticd matrix (subroutines ending in HERK):
C~aAA"+BC o C~ aA"A+BC

where C is hermiticd and A isto the right or left of the multiplicaion by A", depending
on a subroutine parameter (TRANYS).

f. Rank-2k update of a symmetricad matrix (subroutines ending in SY R2K):
C -« aAB"+ aBAT+3C a C -« cA'B+0aB™A +3C

where C is symmetricd and A is to the right or left of the multiplicaion by BT,
depending on asubroutine parameter (TRANYS).

0. Rank-2k update of a hermiticd matrix (subroutines ending in HER2K):
C — oAB" + dfaBA" +3C or C — oA"B + dfaB"A +BC

where C is hermiticd and A isto the right or Ieft of the multi plication by B, depending
on a subroutine parameter (TRANYS).

h. Solutionsto triangular equations g/stems (subroutines ending in TRSM):
B - aopA)B o B — aBopA)

where A isatriangular matrix; it isto the left or right of the multipli cation depending on
asubroutine parameter (SIDE), and ogA) can be A1, ATo A™",

Leaving aside O(n?) operations, such as the cdculation of op(A) = AT, naticethat every L3
BLAS subroutine has matrix multi pli cation as prevaili ng operation (as regards arithmetica
operations quantity). In addition, [77] shows how the entire level 3 BLAS can be
implemented in terms of the matrix multiplicaion operation keeping the performance
closer to eath computer's passble optimum. Within the market context, notice the example
of Intel: it puldished in Internet, together with Pentium Il commerciali zation, a document
[74] explaining how to use to the utmost the procesor's computing cgpability in terms of
matrix multiplicaion, apart from providing the procesr's users with a library of
optimized matrix computing functions.

21

Chapter 2: Matrix Multiplication Parallel Computingin Locd AreaNetworks

2.3 Matrix Multiplication as Benchmark

Computers performance daraderization has been used with several purposes, such as[63]:
- Problem solution cgpability estimation, regarding bath the size of the problems that can
be solved and the necessary running time.
Computers cost verificaion, not only in terms of hardware but also in terms of base and
appli cation software.
Seledion of the most appropriate computer for solving the problem or type of problems.
In this case, the throughpu index is implicitly used as a comparing parameter of
potential computers.

Traditionally spe&ing, a computer numericd computing cgpability was charaderized with

the number of floating paint operations per time unit (Mflop/s: millions of floating point

operations per seand) or by a number identifying it unambiguowsly [64] [SPEC]. Also,

two general li nes were traditionally adopted for the computation d this throughpu index:

1. Processng hardware analysis. floating point unit/s, floating point units design
(pipelines, internal recordings, etc), cadie memory/ies (levels, sizes, etc.), main memory
cgpadty, etc.

2. Exeaution d aspedfic computing program or set of programs caled benchmarks.

In general, the processng hardware analysis results in what is known as pe& throughpu,
or theoreticd maximum performance of the computer. This performance charaderization
line has been adopted by computer manufadurers and is now acceted - an unusua fad for
aspedfic gpplication.

The usage of benchmarks becane daily, due to the division that may arise between the
pe&k performance and the red performance normally achieved by the appli caion exeaition
in the computers. It is redly difficult to chocse a set of programs that fulfils the
charaderistics of representing al the scope of possble applicaions exeautable on a
computer. Thus, there exist many benchmarks that are used and many more proposed.

If the type of spedfic applicaions on which computers are to be used is well defined, the
charaderization in this spedfic applicaion field withou employing the most genera
benchmarks is still very useful. This is the case of the applications defined in terms of
matrix multi plicaions and, thus, the same matrix multiplicaion performance is what can
be more predsely obtained in this field and what is considered as the reference benchmark
in terms of throughpu.

Using a benchmark so spedfic and so close to the applicaion to be solved has -in the
context of parallel programs exeauted over heterogeneous hardware - another advantage: it
acarately defines the workstations relative speed for locd processng. Although this index
(computing relative spead) is not so necessary nor so important within the parall el
computers context with homogeneous processng elements, it is indeed esentia for
paralel computation with heterogeneous processng elements. Withou this type of
information, it is redly difficult to adieve a computational load balance (at least,
staticdly).

22

Parallel Computingin Locd AreaNetworks Chapter 2: Matrix Multiplication

2.3.1 Level 3 BLAS Benchmark

It is evident that, if the whole level 3 BLAS is to be diredly implemented in terms of
matrix multiplication[77], the obtained performancewill almost be that of the same matrix
multiplication. But, if we chocse to implement ead subroutine (L3 BLAS) taking
advantage of its computing feaures optimaly and independently of the matrix
multi pli cation, a performance very similar to that of the same matrix multipli cation might
till be obtained. In this way, matrix multiplicaion is a good "representative”" (and with
this, abenchmark is constituted) in terms of the throughpu of level 3 BLAS routines.

A more solid argument to badk up the consideration of matrix multiplicaion as
representative in relation to the whale level 3 BLAS routines throughpu would be that, at
least in the sequential scope, the performance obtainable by ead subroutine of level 3
BLAS is similar to the one that can be obtained with matrix multiplication [122] - a fad
which is experimentally proved. In this sense, knowing the throughpu obtained with
matrix multiplication, a quite concrete ideaof the performance obtainable with all of level
3 BLAS subroutines can be traced.

2.3.2 As a "General" Benchmark

In the field of benchmarks in general, i.e. of the programs that are intended to be used to
identify computers computing capability (paralel or not), matrix multiplicaion
representativeness is much more debatable. In fad, there exists a large quantity of
reseachers and companies that consider that the only thing that can be a benchmark is a
red applicaion [64]. However, in some benchmark distributions of free use for paralél
maaines [68] [94], it is dill i ncluded as a"lower level benchmark”.

In some way or ancther, results are still been reported in relation to matrix multi plicaion
throughpus in paralel and sequential computers. One of the main reasons is that, with
matrix multiplicaion, a nea-optimal performance of the computer used can be attained. In
this sense, matrix multipli cation has become, in some way or ancther, a quality metrics of
the implementation of numericd agorithms or, at least, of agorithms related to linea
algebra operations. An example, acalemic in principle, is constituted by ATLAS [127
[ATLAS] that, only as a commercial example, [SCSL2] tries to show how good is the
scientific computing library asauring that, for mono-procesor madhines, the performance
excedls the theoreticd 95% and, for 64-procesors-paralel madines, the relative global
performance exceals the theoreticad 85%. The ideain this sense is that "there exists some
code that solves at least one linea agebra problem with nea-optimal performance of eath
process', with the intention of extrapaolating this fad to at least a subset of the problems to
be solved in the cmmputer/s.

23

Chapter 2: Matrix Multiplication Parallel Computingin Locd AreaNetworks

2.4 Matrix Multiplication Parallelization

For acalemic reasons (and simplicity), one of the first paralel algorithms explained in
textbooks of parallel processngs is that of matrix multiplicaion [56] [82] [79] [124] [10]
[58] [52] [3]. However, beyond its acalemic relevance the reseach has been updated
throughou the yeas by its importance as a problem to be solved, and this is demonstrated
by severa pulications with this resped, some of which are the ones previously mentioned
and some othersare[23] [35] [30] [120Q [26] [873].

Matrix multiplication has very spedfic charaderistics as regards the design and
|mplementat|on d aparale agorithm in the parall el algorithms context in general:
Computation independency: ead element computed from the result matrix C, ¢, is, in

principle, independent of al the other elements. This independence is utterly useful
because it al ows awide flexibility degreein terms of paral eli zation.
Data independence the number and type of operations to be carried out are independent
of the data. In this case, the exception is the agorithms of the so-cdled sparse matrix
multi pli cation, where there exists an attempt to take advantage of the fad that most of
the matrices elements to be multi plied (and thus, of the result matrix) are equal to zero.
Regularity of data organization and of the operations caried out on data: data are
organized in two-dimensional structures (the same matrices), and the operations
basicdly consist of multipli cation and addition.

The first charaderistic makes matrix multiplication spedally appropriate for paralel
madhines cdl ed multi procesors, where a set of procesors, or processng elements, share
the same memory. Parallel agorithms for multi procesors often follow the basic lines of
decompasition or division of data to be computed and/or of Divide-and-Conquer
reaursively. In general, al of them have a previous static or dynamic period for partitioning
or dividing data quantity (or parts of the multiplication result matrix) to be computed in
eahh procesor and, eventualy, a subsequent utilization period of intermediate
computations to compute the final result.

The last two charaderistics make the propased algorithms for parall el matrix multi plicaion
follow SAVID (Single Program - Multiple Data) parallel computing model in general [52]
[114. In this way, a same program is exeauted asynchronowsly in eat procesor of the
paralel madiine and it is eventually synchronized and/or communicaed to the other
procesors. It is worth to mention that SPMD is independent of whether the
implementationis carried out on a multi procesor or multicomputer parall el machine, or on
aparalel computer with processng architedure distributed as a workstation retwork.

In generadl, it is redly difficult to find in literature (abowve al in textbooks dedicaed to
explain how to cary out parallel processng) parallel algorithms for a certain type of
paralel computing architedure. Even though algorithms can be adapted in a more or less
complex way to ead of the avail able paralel processng architedures, it is also true that
there exists an adaptation and implementation cost at an algorithmicd level. And even
more important is the fad that, in the context of applicaions with grea computing
requirements, the cost in terms of throughpu obtained may be too high. Then, in most of
the cases, a close relation between ead algorithm and a particular parallel computing

24

Parallel Computingin Locd AreaNetworks Chapter 2: Matrix Multiplication

architedure can be found. That is why, in the following sedions, eat of the mentioned
algorithms will be diredly related to the underlying paralel computing architecure with
which the best results will be obtained acwrding to the performancethat is or can oltained.

2.4.1 Parallel Algorithms for Multiprocessors

As previously stated, algorithms following computation division or decomposition
principles and those of "Divide and Conguer" reaursively are considered the most
appropriate for shared memory paralel computers or multiprocessors. In fad, in the
computation C = A x B, afirst attempt would be to divide diredly the computation of C in
as many parts as processors can be used. In this sense, the fad that matrices A and B are
acceszd only for realing their elements and that matrix C is only accessed for writing its
elements (what was previously explained as computation independence) is highly positive.

Direct Partitioning. As Figure 2.1 shows, with a certain stream for eat processor Py, ...,
P,, ead of them can access matrices A and B data without being synchronized with the
other data (except at aphysicd level, depending on the shared memory organization) since
the data of both matrices are accessed only for reading. In the same way, ead procesor
can accessmatrix C independently of the others in order to store eat of the elements to be
computed in function d the dements of A and B.

I:)1
A
P, C
Matrices in
Processors shared memory
P B
3
P
4

Figure 2.1 Multiplication Computation Divisionin Multi processors.

This methodto cary out computations would at least need an initial phase to determine the
part to be processed by eat processor and afina synchronization to determine when al of
procesors have finished the computations and, thus, when the result is thoroughly
computed. On the other hand, no data replicaion type is added despite the fad that some
parts of matrices A and B are used by more than one procesor, since all data are stored in
the shared memory.

The fad that more than one procesor has accessto the same part of a matrix (A or B) may
cause drawbadks in relation to the simultaneous accesses to a memory. In this sense, and
depending on the shared memory design, processors can be sequentiaized and, thus,
penali zed as regards their throughput. However, these problems can be eaily solved since
they can be intercdated in the accessto different parts of a same matrix. In the example

25

Chapter 2: Matrix Multiplication Parallel Computingin Locd AreaNetworks

of Figure 2.1, for instance, processor P; might begin the accessto matrix A from the
first row onwards and processor P, from the last row (through which it accesg towards
the first one.

the diff erent levels of intermediate cache memory (between ead processor and the main
shared memory) together with block-computing algorithms highly reduce the number of
accessto the shared memory.

It is worth to mention the simplicity of the division, taking advantage of the same
multiplication charaderistics together with multiprocesors homogeneity as regards the
computing cagpability of ead computing element (procesors).

Reaursive Divide-and-Conquer. The idea of carying out the multiplication in parts or
submatrices is used up in this type of agorithms [70] [62] for the processng
paral elization. The dgorithm in pseudo-code can be expressed as Figure 2.2 shows [124]:

mat _nmul (A, B, C, s)

[* A B matrices to multiply */
[* C result matrix */

/[* s: matrices size */

{

if (sequential multiplication)
C = AxB;

}

el se

{
mat _nul (Aco, Boo, COoo, S/2); [* (1) */
mat _ITUI (Ao]_, B]_o, Cloo, s/ 2), /* (2) */
fTat_nUl(Aoo, Boi, COo1, S/ 2); * (3) */
mat _mul (Ao, Bu, Cles, S/2); [* (4) */
mat _ITUI (AlO, Boo, mlo, s/ 2), /* (5) */
mat _mJI (A]_]_, Blo, Cllo, s/ 2), [* (6) */
mat _ITUI (AlO, Bo]_, Q)ll, s/ 2), /* (7) */
mat _mJI (A]_]_, Bll, C111, s/ 2), [* (8) */

}

Coo = Qoo + Cloo;

Coi = o1 + Clgg;

Cio = @0y + Clyy;

Ci:1 = 0y + Clyy;

}

Figure 2.2 Reaursive Divide-and-Conquer Pseudo-Code.

where:
Eadh matrix A, B, and C is divided in four equal parts, as Figure 2.3 shows. This
number of parts of ead matrix is diredly related to the number of reaursive cdls that
must be caried ou to oltain intermediate cmputations.
Most of the operations are caried out in the reaursive cdls to mat _nul , and the last
four addition operations between intermediate computations (sub)matrices CO; and C1;

26

Parallel Computingin Locd AreaNetworks Chapter 2: Matrix Multiplication

(0O<i,j<1) aeto be caried out to obtain the corred result of ead of C's matrix
submatrices, as Figure 2.3 shows. These last operations can be carried out in a subset of
procesors used for solving multi plicaions of reaursive cdls.

Each reaursive cdl to mat_mul numbered from (1) to (8) can be exeauted in a diff erent
procesor, depending on the quantity of available processors and the performance
obtained acmrding to the quantity of matrices datato be muiltiplied.

The condtion (sequenti al mul tiplication) can be givenin function of the size
of the matrices to be multiplied (s = 1, in an extreme case) or the number of reaursive
cdls that determine, in turn, the number of processors to be used simultaneously for
partial results computation.

mUO a)m
ClOO § j Clol
A LN B
C 7 o
A | Ao 0o | o1 B, | B, Multiplications
A B |B --- Additions
10 11 10 11

Figure 2.3 Reaursive Divide-and-Conquer Submatrices and Computations.

For this algorithm, like for the dired partitioning algorithm, it is aso interesting to notice
that the computation division (and the subsequent parall eli zation) is highly favored by the
homogeneity in the multi processors processng elements.

Notice also that, as it is expressed, the required space for data increases considerably,
taking into acount the fad that for ead block of the result matrix C, C;, there are two
blocks of intermediate data CO; and C1;;. However, with some modificaions - reducing the
paralelism in the quantity of reaursive cdls or increasing the dependency between
intermediate computations with data blocks - this extra memory requirement can be
avoided.

Figure 2.4 shows Figure 2.2 pseudo-code modification caried out to avoid the fad that the
required memory quantity is greder than the required memory quantity for the sequential
algorithm. In thisway, mat _nmul is modified to cary out a multiplication and an addition
(BLAS_GEMM style) instead of a multiplicaion only, becoming mat _rmul _sum All the
processng by blocks is kept, though now there are reaursive cdls pairs to mat _nul _sum
that use a same block of C. These are the numbered cdls, with (1) and (2), (3) and (4), (5)
and (6), and (7) and (8) respedively. The use of a same block of matrix C in reaursive cdls
pairsimplies that:

27

Chapter 2: Matrix Multiplication Parallel Computingin Locd AreaNetworks

Two intermediate data blocks are no longer necessary (with resped to mat _nul) for a
single block of the result matrix.

Reaursive cdls numbered from (1) to (8) are no longer independent of ead other but
there exist data dependency between cdls pairs and, thus, they would not be exeauted
simultaneously. In this sense, the number of muiltiplications that can be simultaneously
caried ou isreduced from 8 to 4 (in severa processors).

Final additions appeaing in Figure 2.2 are no longer necessary becaise they are solved
diredly in the same subroutine mat _nmul _sum

mat_nul _sum(A, B, C s) /* C= AxB + C */
[* A B: matrices to multiply */

[* C result matrix */

/* s: matrices size */

if (sequential multiplication)

C = AxB + C

}

el se

{
mat _mul _sunm(Aw, Boo, Coo, S/2); [* (1) */
mat _mul _sunm(Aoi, B, GCoo, S/2); [1* (2) */
mat _mul _sunm(Aw, Boi, Coi, S/2); [* (3) *I
mat _mul _sunm(Aoz, Bii, Coi, s/2); [* (4) *1
mat _mul _sum(Aw, Boo, Cuw, s/2); /* (5) */
mat _ITUI _SurT(Aii, Bio, Cio, S/ 2)7 * (6) */
mat _mul _sum(Aw, Boi, Cu, s/2); [* (7) */
mat _ITUI _SurT(A, Bu, G, s/ 2)7 * (8) */

}

Figure 2.4: Reaursive Divide-and-Conquer Modification.

What in the dired partitioning algorithm is the initial phase of matrices division, in this
algorithm would be the reaursive cdls lved by different procesors.

Strasen's Method Parallelization. Strasen's method is one of the most innowative in
terms of matrix multi plication sequentially solved [114]; in [59], it is aso cdled Divide-
and-Conguer algorithm and presented as a reaursive algorithm. Figure 2.5-a) shows
intermediate computations assuming that matrices to be multiplied are divided in four parts
or submatrices or even blocks as those of Figure 2.5-b).

Although it is difficult to compute exadly the arithmeticad operations quantity for this
method, the multi pli cation operations quantity is usualy computed (or estimated in terms
of order of magnitude) assuming that the quantity of additions is nealy equal [59]. Under
this consideration, Strassen's method has an advantage: it reduces the complexity or
number of operation among floating point numbers to O(n'*% 7), taking as reference the
multi pli cation conventional method that is of O(n®). We can also mention as an advantage
the fad that it can be implemented by using reaursion.

28

Parallel Computingin Locd AreaNetworks Chapter 2: Matrix Multiplication

Po = (Ao + A11) X (Boo + B11) A A | A
P1= (A1 + A1) X Boo bl I
P> = Aqgo X (501 - Bll) Agl Ay
Ps= A X (BlO - Boo) B
Ps= (Ao + Aoy X B1a By | By
Ps = (A10- Aoo) X (Boo + Boi) B B
Ps = (Ao1 - A11) X (B1o + B11) vl
Cowo=Po+P:-Ps+Ps C
Coi=P:+ Py Coo C01
Ciw=P:+Ps
Cu=Po+Py- P+ Py Co| S
a) Submatrices and Computing B Matrices Partitioning

Figure 2.5 Strasen's Method.

From Strassen's method sequential implementation pant of view:

- Thereis generally a spedal emphasis on the fad that the operations between matrices
elements are diff erent for those conventionally defined and, thus, the effeds of roundng
and numericd stability can be redly different depending on the values of matrices
elements to be multiplied [59].

In a similar way to what happens with the previously mentioned algorithm (reaursive
Divide-and-Conquer), intermediate data are necessary to read the definitive values to
be computed: blocks Py, ..., Ps of Figure 2.5-a). Unlike the algorithm presented as
reaursive Divide-and-Conquer, the removal of those intermediate data blocks is redly
difficult and, in fad, is not considered. That is why Strasen's method memory
requirements are rather higher than those of the traditional method.

From Strassen's method parall €li zation pant of view:

- Considering shared memory multiprocesors is immediate given that, as the reaursive
Divide-and-Conquer method, there exist several multiplications that can be caried out
simultaneously. In the case of Strassen's method, they are seven: the computation of
eah P, withO< k< 6.

There exists a computational load unkalance both in the intermediate block computation
P, and in the definitive blocks computation C;; as from P.. For instance in order to
compute P, two blocks addition and one multiplicaion are necessary, but to compute
P., one addition and one multiplicaion are necessary. This affeds both the number of
data accessed and the number of operations between scdars to be caried out. Anyhow,
a speda emphasis has to be placed on the fad that these differences are at an O(n?)
operations level (additions and subtradions) vis-avis multiplicaion operations with
complexity of O(n®) or O(n'*% 7).

It is important to remember that the ideaof diving the matrices to be used/computed in
blocks is intensively and extensively utili zed in al sequential matrix algorithms as well as
in the paral el ones because, as stated before, it all ows the organization of the computation
by blocks and, in this way, the use of the memory cade/s is considerably increased. Since

29

Chapter 2: Matrix Multiplication Parallel Computingin Locd AreaNetworks

matrices to be processed are usualy very large (in general, al the main avail able memory
is used and, in some cases, the swap memory space is used as well), this type of
computation organization is indispensable in order to obtain an acceptable performance In
other words, withou processng by blocks, the accesstime to the datais, in several orders
of importance, greaer than what the processor neals to operate at its maximum speed or, at
least, an important fradion d the pasgble maximum.

2.4.2 Parallel Algorithms for Multicomputers

Most of the reports on parallel agorithms for matrix multi plication (and similar problems)
are those dedicated to the design taking into ac®urt the fad that the underlying computing
architedure will be that of a multicomputer [59] [117]. On the one hand, multicomputers
have always been considered more scdable than multiprocessor and, on the other, the
design and development of multicomputers have always been constant throughou the time,
resson why they have become more atradive for paral el algorithms development.

Systolic Arr ay or Processors Mesh. Despite the fad that this way of matrix multi pli cation
is originaly thought for SIMD type computers - or simply for being diredly implemented
in hardware [82] [124- it can be generally applied considering matrix blocks like in the
previous algorithms. Figure 2.6 shows the initial display of data and processng elements
for multi plying two matrices of 3x3 elements.

22
* One-cycledela & 2
y y b20 bll b02
blO b01 .
D Processing element

b, =

Figure 2.6 Multiplication d 3x3inaMesh Array.

It is clea that the processng or processors elements are interconneded in a mesh or bi-
dimensional array. Normally, communication operations (indicaed by the arrows and al of
the multiplicaion and addition operations patentially caried out by ead processng
element depending on the available data) are courted as a "cycle' or "step” of the
processng.

Figure 2.7-a) showsthe first step of the processng where:
al the elements of the matrices A and B "move forward" in the diredion of the

30

Parallel Computingin Locd AreaNetworks Chapter 2: Matrix Multiplication

correspondng arrows, and elements ay and hy, read the procesor dedicaed to compute

Coo.
the first operation for the computation d Coo, i.€. @ X boo.

Figure 2.7-b) shows the seoond step of the processng where:
all the elements of matrices A and B "move forward" once again in the diredion of the
correspondng arrows; elements
+ ag and b read the procesor dedicaed to compute Gy,
+ ago and hy; read the procesor dedicaed to compute G,
+ ay and hy read the procesor dedicaed to compute Go.
the potential operations are carried out in this step for the computation of Co, Co1 and Cyo,

i (2)_ ~(1) L2 c2)
1.6, Coo=Cop 801X Byg; Cor =8gpX By Cro =ay0X by .

22
a) First step b, b, b) Second step b
b b

E 11 02 20
vy
: h h % —{cgt oL |
% el Cor
a a (2)
1 10

R e

(2) (1) _
Coo = Coo + 891 X D1g=80eX bog+ag; X by

(1)
Copy = X b,))
=807 oo Cio = 30X by Cor = 80X Doy

22

21 12

(=2
=

Figure 2.7: First two steps of aMultiplicaionin aMesh.

The foll owing condtions shoud be fulfill ed so that this type of processng has an optimal
performance
All the communicaions are caried out simultaneously. In the case of Figure 2.6 and
Figure 2.7 this implies that all the processng elements may be able to cary out
simultaneously (overlapped in time) upto:
+ two communicaions for datareception.
+ two communicaions for data sending.
Overlapped computation with communicaions, i.e. arithmeticd operations are caried
out at the same time the data are being sent and recaved. In this case, in the steps
previously explained, the computation of is overlapped (caried out simultaneously)
with the communications correspondng to the sescondstep of the processng.
I/O simultaneous operations, considering that the communicaions towards the first row
and first column of the bi-dimensional array of Figure 2.6 and Figure 2.7 imply I/O. In
case there exists ladk of data I/O in parall €, al the matrix data shoud beinitialy in the
procesrs first row and first column, what would imply, in turn, different memory
requirements for the diff erent procesors depending on their all ocaionin the mesh.

This paralel matrix multiplication algorithm is very simple and well defined for many

31

Chapter 2: Matrix Multiplication Parallel Computingin Locd AreaNetworks

reasons:
Computation distribution simplicity and naturalness a procesor or a processng
element is basicdly and exclusively dedicaed to computing a part of the result matrix,
be it an element, a submatrix or a block. At this point, once more, the processng
elements are asumed to be homogeneous and, thus, the distributionistrivial.
"Fixed" and a priori known communicaions pattern: all data broadcasts are point-to-
point (between two procesors) and previously known in terms of quantity and type of
broadcasts (how many data and ketween which procesors).
Memory requirements equal to al the processors: there is no procesor that shoud have
more or less data than the rest of them, even if it has the necessary buffers for the
communicaions sncethey are the samein all the procesors.
In particular, the first two charaderistics turn very smple the load balance over the
procesors (in terms of computation to be caried out) and over the interconredion
network (in terms of data broadcast to be caried ou between the procesors).

Cannon's Algorithm. It is also proposed for a two-dimensional array of processng
elements [23] [79] interconneded as a mesh and with the edges of ead row and column
interconreded, i.e. making up a structure cdled torus (as Figure 2.8 shows) for 3x3
processng elements.

(AU

| >
| >
LI LD

Figure 2.8 3x3 Torus of Procesgng Elements.

Initialy, matrices A, B, and C data distribution is similar to that defined previously in the
mesh, i.e. if the procesors are numbered acwrding to their position in the two-dimensional
array, processor P; (0< i, j < P-1) hasthe dements or blocks of positionij (0<i, j < P-1) of
matrices A, B and C. In order to simplify the explanation, matrices elements shall be used
instead of blocks. From this data distribution, matrices A and B data are "redigned” or
resssgned so that, if there is a two-dimensional array of PxP processors, the element or
submatrix A inrow i and column (j+i) mod P, & ;+imeee, aNd &S0 the element or submatrix
of B in row (i+j) mod P and column j, bj+ymer,, &€ assgned to procesor P;. In other
words, eat data of row i (0 <i < P-1) of the elements or submatrices of A are transferred
or shifted i times towards the |eft procesors, and ead data or columnj (0 < j < P-1) of the
elements or submatrices of B are transferred or shifted j times towards upper processors.
Figure 2.9 shows the initial assgnment a), and initial relocaion b), imposed by Cannoris

32

Parallel Computingin Locd AreaNetworks Chapter 2: Matrix Multiplication

algorithm for matrices of 3x3 elements in a 3x3 processors torus (for simplification,
processors' interconredions are not shown in the figure).

a00 bOO aOl b01 a02 b02 a00 bOO a01 b11 a02 b22
00 01 02 COO 01 02

alO blO a11 b11 a12 b12 a11 blO a12 b21 alO b02
10 Cll 12 10 Cll 12

aZO b20 a21 b21 a'22 b22 a22 b20 a'20 bOl aZl b12
20 21 22 C20 21 22
a) Initial Assgnment. Jinitial Relocdion.

Figure 2.9 3x3 Data Locaion for Cannoris Algorithm.

From theinitial relocaion, the foll owing steps are caried ou iteratively:
Locd multiplicaion d data assgned in ead processor for apartia result computation;
Left rotation d the dements or submatrices of A;
Upwards rotation d the dements or submatrices of B;

and after P of these steps, thoroughly computed values of matrix C are finally obtained.

Summarizing, the outstanding charaderistics of this way to carry out matrix multiplication
are:
By the way matrices A and B data are communicated, this is an "initial alignment and
rotating” algorithm.
Load balance, bath in terms of computation and communicdions, is assured only if the
processng algorithms are homogeneous.
As in the processng defined for the processors grid, the running time is minimized if
the computation can be overlapped in time with communicaions.
Matrices A and B data distribution is not the initial one when the matrix multi plication
computationis finished.

It is worth to mention that the last charaderistic becomes redly important since, as
previously stated and as with al L3 BLAS routines, such distribution is part of some
applicaion - not necessarily the same applicaion. Thus, any subsequent processng will
have to consider this new matrix distribution or, after Cannoris algorithm, the matrices will
have to beredigned in order to retrieve the initial data assgnment.

Fox's Algorithm. It is also suggested for a two-dimensional array of processng elements
[57] [56] [58] [79] interconreded as a mesh and with the edges of ead row and column
interconreded, i.e. making up a structure cdled torus. Once more, matrices A, B, and C
data distribution is similar to that defined before, i.e. if the processors are numbered
acording to their position in the two-dimensiona array, processor P; (0 <1, j < P-1) has
the elements or blocks of positionij (O <1, j < P-1) of matrices A, B and C - as shown in
Figure 2.9-3). In this case, no initial step of data relocdion is defined; instead, the

33

Chapter 2: Matrix Multiplication Parallel Computingin Locd AreaNetworks

algorlthm isiteratively defined from this point. In theiterations or step k:

The block or datum of matrix A stored in the procesor of position i, i+k mod P is sent
to all the procesors of row i in the two-dimensional array broadcast by rows.

In ead processor, A's recaved data are multiplied by B's data locdly stored, thus
obtaining a partial result of matrix C.

B'sdata ae upwardly rotated as in Cannoris algorithm.

Figure 2.10shows the processng correspondng to the first step of Fox's algorithm in a 3x3
procesors two-dimensional array, and Figure 2.11 shows the processng correspondng to
the seaondstep of Fox's algorithm in a3x3 processors two-dimensional array.

| ! l]]]

aoo boo a01 b01 aoz boz aoo boo a b aoz boz a b a01 E)01 aoz 02
Coo C01 Coz C(Ol(; Croll‘ C(olzﬁ C(Olo‘ C[0111 C(olzJ
. \ i

alO bm é‘11 b11 a‘12 b12 alO blO a11 b11 a12 b12 alO blO a‘11 b11 a‘12 b12
ClO C11 C12 C(110J C[1111 C(112} C(llot‘ Cflll‘ C(llzﬁ
! ! |

azo bzo a21 b21 a‘22 bzz azo bzo a b a22 b22 azo bzo a21 b21 a22 b22
20 C21 C22 C(ZloJ C(zllJ C(zlzJ C(21OJ C(leJ C(212J

t t T

(1) _ L1 T
Coo = 800X Poo; Co1 =890X Bo1; Cor =X by,
ch=a, xb,,; ¢=a,,xb,;; ch=a,xb
10 =13 X Dyg; Cpp =833 X Dyy;5 Cpp =3, X Dy

1)
d20 =8,,X byg; C21 =8, XDy C22 =a,X Dby,

a) Broadcast.)thocd Computing. c) Shift.

Figure 2.1Q First step o fox's agorithm, 3x3 Matrices.

The main charaderistics of Fox's algorithm are:

34

As with the previous cases, the load balance in terms of the computation that eat
procesor must carry out isredly smple assauming that the processors are homogeneous.
The load balance with resped to the intercommunication network canna be analyzed as
easily as Cannoris algorithm, since not only shoud point-to-point communicaions be
bea in mind, but also colledive communications: broadcast by rows. Even so, the
communicaions network could have load balance in terms of communicaions by
columns since they are al of point-to-point nature; and by rows, since they are all
broadcast communicaions. From the point of view of the communications generated in
eat processor, they all generate the same load over the interconredion retwork:

» an upvards data deli very of matrix B.

+ adatarecegtion d matrix B from below.

+ adédivery or recetion of data broadcast of matrix A towards the remaining row

procesors or from a processor of the same row, respedively.

Sinceall the processors have the same quantity and type of communications, the buffers
will be the samein all the procesors - in case they are necessary.
Memory requirements in ead procesor are greaer in comparison with the Cannoris
algorithm because dl the procesoors shoud have:

Parallel Computingin Locd AreaNetworks Chapter 2: Matrix Multiplication

« ablock or asubmatrix or A locd matrix.
« ablock or asubmatrix or B locd matrix.
+ ablock or asubmatrix or C locd matrix.
+ ancther block for receving broadcast by rows of block A communicated in eat
step.
Unlike Cannoris algorithm, once matrix multiplication is finished, the data of ead of
the matricesremain like in the initial assgnment.

v \ } [] [] []
aOO blO é01 bll a'02 b12 %O blO aOl bll a02 blZ a.00 b10 aOl b11 a02 blZ
I O I O B 1

i i |
a.10 b20 all b21 é'12 b22 a'10 b20 all b21 a12 b22 alO b20 all b21 a.12 b22
dl:t)J C(l:%L‘ C(ll2J C(120J C(121‘ C(lZZJ 6120:‘ C(121‘ C(lZZ‘
\ i '
é20 bOO a21 bOl a'22 b02 aZO bOO a21 bOl a22 b02 aZO bOO a21 t:01 a22 b02
B L] e e e el |4l |al |«
il il i

(2) _ (1) A2 1) A2 1)

COO - COO + a’Ol>< blO’ C01 - COl + a‘OlX bll’ C02 - C02 + a‘OlX bl
cZ=dl+a,xb,; cZ=cl+a,xh,;: ci=ct+a,xb
10 — ~10 12 201 11~ V11 12 211 12— V12 12 2

(2) _ 1) . &2 A1) . &2 A1)
CZO _CZO + a20>< bOO' CZl _C21 + aZOX bOl’ C22 _C22 +a20>< bO

a) Broadcast. Yth.ocd Computing. c) Shift.
Figure 2.11 Seomndsep of Fox's Algorithm, 3x3 Matrices.

As regards broadcast communicaion by rows, the fad that the only communicaions that
could be labeled predefined are the ones carried out between neighba processors shoud be
taken into acount- both in a mesh and in a torus. In this sense, some additional effort is
required, possbly penaized in terms of performance in order to cary out any of the
colledive communicaions (including broadcast by rows) that can aso be defined as a
multi cast from the point of view of a communication complete network. In this sense, there
exist several pulicaions dedicaed to implementing or, in some way or ancther, adapting
the algorithm to the torus static interconnedion [30][120[26]. The basic ideaconsists in
implementing a broadcast via multiple overlapped point-to-point communicaions, i.e.
while a broadcast is being caried out with point-to-point communicaions, the point-to-
point transmisgons for the foll owing broadcast can be started.

It is also possgble to reduce the memory requirement, which in principle can be relatively
greder than the defined in the Cannonis algorithm (more spedficadly, a third part greaer).
The key of the reduction is given in the sub-blocks data communicaion of matrix A
assgned in ead procesor. Insteal of carrying out a broadcast in al the data of matrix A,
two broadcasts can be caried out (for instance, ead with half of the data in matrix A
asggned locdly). This automaticdly reduces the extra memory requirement (taking as
reference Cannoris algorithm) to half of the data of matrix A that ead processor locdly

35

Chapter 2: Matrix Multiplication Parallel Computingin Locd AreaNetworks

has. Smilarly, ten broadcasts can be caried out, ead of them with the tenth of matrix A
assgned locdly, thus reducing to the tenth the extra quantity of necessary memory.

It is worth to mention the fad that when the processng is finished, the matrix data remain
asdgned in ead processor in the same way as they were before beginning the matrix
multi plication. In this sense, and recdli ng what was previously mentioned in the Cannoris
algorithm (that matrix multiplication must be caried out in the context of other
operations), this represents a substantial advantage.

In fad, both for solving the problem of making a broadcast in a torus and for reducing the
necessry memory quantity in order to store the data locdly, the same principle for
acceerating the accessto the datain the memory hierarchy is used, assuming the existence
of one or more levels of cade memory: processng by blocks. Instead of handing al the
data of matrices A, B and C assgned locdly, ead of the submatrices is considered by
blocks, and these are the ones locdly processed (making the multiplicaions of partial
matrices). They are aso the ones that are communicaed through point-to-point
conredions in a same procesors row making up a communicaions pipeline with which
the broadcast is finally solved. Thus, since they are sub-blocks or parts of matrix A
assgned locdly, the quantity of extra memory necessary in ead processor is reduced to a
sub-block or set of sub-blocks that is transmitted in a same point-to-point communication
between procesors of the same row.

DNS Method and Meshes of Trees. DNS algorithm (due to the authors' surnames. Dekel,
Nassmi, Sahni) [35] [100 [79] propaoses the multi plication o square matrices of order nin
a multicomputer with its procesors interconneded in a threedimensions hypercube. Once
more, the basic description of the processng will be made for matrix elements, but its
extension/applicationto blocks or submatrices isimmediate.

As starting point for the DNS agorithm, the attention is diredly focused on ead product
of matrix elements, ayxhy, which are exadly n® operations between scdars in the case of
multi plying square matrices of order n. With n® processors, ead procesor isin charge of a
multiplication and, then, all the values obtained from ead multiplicaion must be
acarately summed in order to obtain ead of the n* elements of the result matrix. More
spedficdly, numbering the procesors as if they were organized in a threedimensions
array (i.e., NXnxn processors), procesor Py, 0 < i, j, k< (n-1), isin charge of carying out
multiplication ayxby. Then, acaimulating (adding) values P,o...Pn1, the value ¢; is
obtained for the result matrix.

If the matrices data (elements or submatrices) distributed in processors P, are considered
(i.e., that ay, by and c; are assgned in procesor Pjo), data must be distributed/repli cated
before carying out the multiplicaions. For this step, it is also convenient to visualize
procesors as they were organized in a threedimensional array - such as Figure 2.12-9)
shows- for nine procesrs, i.e. as successve planes (correspondng to indexes ij)
overlapped for different values of k.

36

Parallel Computingin Locd AreaNetworks Chapter 2: Matrix Multiplication

HpNEN []
O][
L O OF oz L] O] [

]

e
Ceem
e
afal= 0 = I
00O (0,01 Cem
OnoO7 % /0400 el
eI
o
“W=Kn

« /000
000]
/00 0P /0

]

a) Proces9ors Identificaion. B A Columns Distribution. ¢) Broadcast by Planes
Figure 2.12 Datain DNS over an Array of 3x3x3 Processors.

From the initial assgnment of matrices elements to the processor P, in the inferior plane
of Figure 2.12a), the j-th column of matrix A is sent to the correspondng procesors (j-th
column of processors) in the j-th plane, i.e. from processors Py, to procesors Py (0< i, j <
n-1), as Figure 2.12b) shows. As final step in the data distribution of matrix A, the
procesorsin ead plane with the data of A, Py (0< i, j < n-1), make a broadcast by rows of
procesors such as Figure 2.12-c) shows and, in this way, it is passble to have element ai
in eat Py The way of distributing data of matrix B is similar, but instead of distributing
by columns, the distribution is carried out by rows. Once all processors have the data, they
can exeaute the multiplication and, then, the results are summed in procesors Py ...Pjn.1,
such asit was previously mentioned.

The most relevent charaderistics of this method to compute matrix multi plicaion can be

summarized as follows:

« It can multiply matrices of order nin O(log(n)) steps.
It uses (up to) n® procesors, and though it is explained for matrix elements, it can be
applied to submatrices or blocks.
A same datum of ead matrix A isused and, thus, copied in all the procesors row, such
as Figure 2.12-c) shows; and, smilarly, a same data of matrix B is copied in al the
procesors column and, thus, several replicaed data ae obtained.
It isclealy oriented to paralel computers with interconneded processors as if they were
in a threedimensional structure and, in fad, this produces the reduction in the
computing quantity to O(log(n)) and, at the same time, data replicaion in severa
Processors.

These charaderistics are similar to those of the matrix multi pli cation method over a mesh
of procesorstrees[82] [99]. In fad, this method also foll ows the sequence
Initial assgnment of n? elements of ead matrix to n? processors or processng elements.
Communicaion/replicaion of matrices elements so that ead procesor has the
necessary data for making the multiplications ax x by.
Addition d the multi plication resultsin order to oltain the matrix C elements.

37

Chapter 2: Matrix Multiplication Parallel Computingin Locd AreaNetworks

2.

5 Chapter Summary

The most important issues that have been introduced and/or explained in this chapter, apart
from the very definition of matrix multi plicaion and the number of operations needed for
its resolution, are:

The identification of the linea agebra applicaions context, given by the LAPACK
library, the basic operations included in BLAS, and, more spedficdly, the relation of
matrix multiplicaion. Not only is the matrix multiplicaion smilar to the rest of L3
BLAS operations -in terms of computing and memory requirements-, but aso it has
been demonstrated that al L3 BLAS operations can be implemented using matrix
multi pli cation.
The use of matrix multiplicaion as bechmark. Even though its validity is limited, we
can indeal assert that it represents a good benchmark of the whole L3 BLAS. In
addition, it is used in order to show the optimization quality that can be attained when
the performance obtained can be related to the theoreticd maximum of the hardware
used.
Parallel algorithms for carrying out matrix multipli cation in multi procesors have been
described. In genera, they are redly simple both in terms of description and their
theoreticd analysis of performance
Parallel algorithms for matrix multiplication in multicomputers have also been
described. Normally, we can clealy identify the relation of ead agorithm with the
underlying procesors interconredion (in which the algorithm obtains its best
performance). The adaptations of Fox's algorithm to static and bidimensional (grids and
tori) processors interconredion networks in particular have also been described (the
bidimensiona adapted algorithm algorithm is the onre implemented in the
Sca_APACK library)
All the parale agorithms share common charaderistics relatively important at a
conceptua level:
- They adopt the SPMD processng model.
They asume that processng nodes are homogeneous and take this homogeneity as
an advantage to oltain load balance
They make use of processng by blocks in order to optimize the memory hierarchy of
computers, which are spedficdly oriented to optimization in the accessto data in
cade memory/ies.

Eadh of these points shoud be reviewed in order to be able to analyze, at least, whether the
parale computing algorithms for multi plying matrices are suitable or not. Spedficdly, this
step shoud be caried out after making the description of the parallel processng hardware
provided in locd networks.

38

