
Chapter 4: Experimentation

This Chapter will present the entire experimentation context with parallel computing algorithms
for matrix multipli cation computation. It presents a detailed explanation in terms of hardware
(three local networks) and matrix sizes with which the experiments were carried out. Initiall y,
computer relative speed values are obtained and, with these values plus an (optimistic) a priori
estimation of the interconnection networks performance, the maximum possible speedup value is
estimated in each of the local networks with the available machines.

The first approximation to the algorithm implementation is based on the PVM library, and all the
results of the experimentation are shown. The obtained performance is far from the optimal and it
is not accepted. Thereby, some details of the parallel execution are shown and reveal that the
problem is not the algorithms but the broadcast message implementation of the PVM library.

Finally, a broadcast message directly based on UDP communications protocol is proposed and
implemented; the experiments are carried out once again, and the results obtained with this
implementation of broadcast messages are shown. Within this context, we conclude that: either
algorithms obtain an acceptable performance or computers generating performance problems can
be detected automatically and, thus, they can be isolated in order to achieve a optimal
performance.

Parallel Computing in Local Area Networks Chapter 4: Experimentation

4.1 Characteristics of the Local Area Networks

Each of the local area networks used in the experimentation are previous to the present
paper and were not changed nor adapted so better results in terms of performancecould be
obtained. The following subsections describe briefly each of the networks, identifying the
most important characteristics of the computers making up such network and the topology
of the interconnection network. Basically, the local networks are:
p CeTAD: belongs to the Center of Digital-Analog Techniques, Electrotechnics

Department, Faculty of Engineering, National University of La Plata. It was installed
long time ago and computers making it up are used with several purposes.

p LQT: belongs to the Laboratory of Theoretical Chemistry, CEQUINOR, Chemistry
Department, Faculty of Exact Sciences, National University of La Plata. It is a network
that aims at the resolution of numerical problems. It was installed several years ago; it
runs sequential and parallel works developed with PVM and Linda.

p LIDI: belongs to the Laboratory of Research and Development in Computer Science,
Faculty of Computer Science, National University of La Plata. It is dedicated to the
teaching of parallel programming and research. It can be considered as a Beowulf-type
installation, though it does not belong to the most costly ones as regards the quantity of
machines and interconnection network.

In more general terms, the parallel software was developed using PVM (Parallel Virtual
Machine). In the particular case of the PCs used, Linux operating system was chosen for
the execution [44] [PVM].

The reasons for having chosen PVM (apart from its free availabilit y) are basically the
following two:
p There exists a single software development and source group. This might be a

disadvantage, but it simpli fies the analysis of the results obtained in terms of
performance since there is no chance of different implementations. This cannot be
asserted in the case of MPI (Message Passing Interface) [88] [92] [107], which has
several implementations and potentially different characteristics as regards performance.

p It is widely used, it has several years of evolution, and its characteristics are very well
known, all of which simpli fies the interpretation of the results obtained in terms of the
parallel applications’ performance that make use of it.

In most of the local networks, the PCs already had Linux installed, mainly with RedHat
[LinuxRH] distribution. Whenever possible, Linux installation was attempted in a
separated disk partition, and the distribution used in such case is that of RedHat.

4.1.1 CeTAD Local Area Network

As previously mentioned, the CeTAD local network has two general characteristics
implying a great heterogeneity of machines:
1. It was installed more than ten years ago, and has undergone changes, additions and

updates.
2. Machines have several purposes, which encompass administrative issues, signal

73

Chapter 4: Experimentation Parallel Computing in Local Area Networks

processing algorithm prototypization, and integrate circuit design of specific purpose.

Table 4.1shows the most important characteristics of the computers that compose the local
network and that are used in the experimentation.

Name Type CPU Clock Mem.

1) purmamarca PC Pentium II 400 MHz 64 MB

2) cetadfomec1 IBM PC Celeron 300 MHz 32 MB

3) cetadfomec2 IBM PC Celeron 300 MHz 32 MB

4) sofia IBM RS6000 IBM PPC604e 200 MHz 64 MB

5) fourier PC Pentium MMX 200 MHz 32 MB

6) Josrap PC AMD K6-2 450 MHz 62 MB

7) tilcara PC Pentium 133 MHz 32 MB

8) paris SPARCstation 4 MicroSPARC-II 110 MHz 96 MB

9) cetad SPARCstation 5 MicroSPARC-II 85 MHz 96 MB

10) prited SPARCstation 2 CY7C601 40 MHz 32 MB

Table 4.1: CeTAD Computers.

Appendix A includes more details of each machine. Except for cetadfomec1 and
cetadfomec2 identified with the “ type” IBM PC, all PCs are built by parts - which is often
the case for PCs.

Once more, it must be said that nothing already installed was changed, though software
tools necessary for the development, implementation, and execution of parallel programs
were added in those computers that did not have them before the experimentation. The
highest installation cost with this respect appeared with PCs that do not have Linux nor the
software tools necessary for parallel computation (libraries such as PVM [44] [PVM]):
p Purmamarca, hard disk partitioned, and Linux (RedHat) and PVM installed.
p Four ier and Josrap, where Winlinux [WinLinux] distribution was installed sinceit was

really diff icult (or risky) to partition the hard disk, and Winlinux distribution was
considered the simplest to install i n such conditions.

The machine interconnection network is Ethernet of 10 Mb/s, and the wiring is shown in
Figure 4.1, where
1. Cascade hubs are used, and the computer logical interconnection is still t hat of a bus.
2. “Trans.” implies Transceiver, which is necessary because the computer netboard -pr ited

- has only BNC connection output (for coaxial cable).
3. “cf1” and “cf2” are used as abbreviations of cetadfomec1 and cetadfomec2,

respectively (and such abbreviations will be used for space’s sake).

74

Parallel Computing in Local Area Networks Chapter 4: Experimentation

Figure 4.1: CeTAD Local Area Network Wiring.

4.1.2 LQT Local Area Network

Unlike the CeTAD local areanetwork, that of LQT is meant to solve numerical problems.
In fact, they only have just the necessary installed for such end,without the classical off ice
tools, such as text or spreadsheets editors/formatters. However, li ke the CeTAD local
network, it was installed, and in use from, many years ago and it has been consequently
updated (and enhanced) several times.

Table 4.2 shows the most important characteristics of computers composing the local
network and that are used in the experimentation. Appendix A includes more details of
each machine.

Name Type CPU Clock Mem.

1) lqt_07 PC Pentium III 1 GHz 512 MB

2) lqt_06 PC Pentium III 1 GHz 512 MB

3) lqt_02 PC Celeron 700 MHz 512 MB

4) lqt_01 PC Pentium III 550 MHz 512 MB

5) lqt_03 PC Pentium II 400 MHz 512 MB

6) lqt_04 PC Pentium II 400 MHz 512 MB

Table 4.2: LQT Computers.

Unlike the CeTAD local areanetwork, all the computers available in this network are PCs
built in parts with a rather higher capacity in terms of computation (processors and
operation clocks frequency) and storage (installed main memory).

The machines interconnection network is Ethernet of 10 Mb/s, and the wiring is shown in
Figure 4.2,where it can be noticed that the interconnection is one of the simplest possible
ones.

75

 Hub

�
 tilcara Josrap sofia

Hub

purmamarca

 Trans.

�
 prited

 Hub

�
cf1
��
 paris cetad

�
cf2

�
fourier

�� �

10 Mb/s

10 Mb/s

Chapter 4: Experimentation Parallel Computing in Local Area Networks

Figure 4.2: LQT local Area Network Wiring.

4.1.3 LIDI Local Area Network

Unlike the two previous local networks:
p LIDI local network was planned and built up exclusively for parallel computation and,

thereby, it also coincides with the Beowulf installation.
p It is no more than oneyear old and, thus, it has suffered no changes sinceits installation,

being still homogeneous.

Table 4.3shows the most important characteristics of the computers that make up the local
network and that are used in the experimentation. Appendix A provides more details of
each machine. Computers appear in a table just to use the same format as for the previous
networks; however, since the computers are equal, it is enough to describe just one of
them.

Name Type CPU Clock Mem.

1) lidipar14 PC Pentium III 700 MHz 64 MB

2) lidipar13 PC Pentium III 700 MHz 64 MB

3) lidipar12 PC Pentium III 700 MHz 64 MB

4) lidipar9 PC Pentium III 700 MHz 64 MB

5) lidipar8 PC Pentium III 700 MHz 64 MB

6) lidipar7 PC Pentium III 700 MHz 64 MB

7) lidipar6 PC Pentium III 700 MHz 64 MB

8) lidipar5 PC Pentium III 700 MHz 64 MB

Table 4.3: LIDI Computers.

As Figure 4.3 shows, LIDI network wiring coincides in terms of simplicity with that of the
LQT network, but not in terms of cost since:
p Installed net boards are Ethernet of 10/100Mb/s, which implies that the communication

speed depends on the hub or switch interconnecting them.
p Instead of a hub, a switch is used, which, like computer netboards, is also of 10/100

Mb/s.
p All the net has thus the capacity of carrying out several (up to four) simultaneous point-

to-point communications of 100 Mb/s.

76

 Hub

�
 lqt_02
�
 lqt_01
�

 lqt_03
�

 lqt_06
�

lqt_07
�

 lqt_04

10 Mb/s

Parallel Computing in Local Area Networks Chapter 4: Experimentation

Figure 4.3: LIDI Local Network Wiring.

4.2 Computers’ Sequential Performance

The computation of computers’ sequential performance is based on two main reasons:
1. Speedupcomputation obtained when using parallel processing. In order to acknowledge

the benefits of using parallel processing it is necessary to know at least the performance
of the fastest available computer in the local network.

2. As advanced in the previous chapter, computers’ relative speed is computed according
to the sequential computing capabilit y of each of them in order to solve a matrix
multiplication.

For these two reasons, performancevalues obtained for each of the machines in each of the
local networks are included in this section. Additionally, Appendix B explains in detail
how these values were obtained according to the different experimentations carried out.

Given the almost numerical nature of data processing, performancevalues are expressed in
Mflop/s (milli ons of floating point operations per second). The representation of the
numerical data is that of simple precision floating point (IEEE 754 norm [72]) in all the
computers. The option of double precision floating point –though generally it is advised
[11] – is discarded mainly because:
p Computers used have the same or similar capacity of processing simple precision

floating point numbers as with double precision, due to the characteristics of their
floating point units.

p When using numbers represented in simple precision, larger sizes of matrices in
memory can beobtained and, thus, greater requirements can also beobtained in terms of
number of f loating point operations necessary for solving a matrix multiplication.

4.2.1 Matrix Sizes

Without doubts, computers’ performance in terms of data processing, in general, and
floating point number processing, in particular, depends on the relationships established
between:
p Amount of Data.
p Memory hierarchy (levels and sizes of cache memory).
p Data access pattern.
Thereby, performancevalues are shown in function of the significant sizes of the matrices.

77

 Switch

�
lidipar13
�

lidipar14
�

lidipar9
�

lidipar12
�

lidipar7
�
lidipar8

�
lidipar5
�

lidipar6

10/100 Mb/s

10/100 Mb/s

Chapter 4: Experimentation Parallel Computing in Local Area Networks

These relations and the most significant details of the chosen sizes in particular are
explained in more detail i n Appendix B.

On the one hand, it is important to have a referenceof the computer processing capabilit y
when all or most of the data to be processed can be included in the cache memory levels
closer to the processor (levels 1 and 2, for instance). In this context, some relatively small
matrix sizes –in comparison to the main memory- were taken as reference: matrices of
order n = 100, 200, 400. Considering that numerical data are represented with simple
precision floating point numbers, for n = 100, the quantity of data necessary to store a
matrix will be of 1002×4 bytes, less than 40 KB of data.

The use of the computers to the limit of their capacity (at least in terms of main memory)
has been a constant and, in some way, reflects the “review” of Amdahl’s Law [6] [60].
Two values were taken as representatives of matrix sizes handled in a main memory of 32
MB: n = 800 and n = 1600. With 800×800 data matrices, the quantity of necessary
memory to contain the three matrices participating in a multiplication (C = A×Β) is of
approximately 7.3 MB of data (approximately, 22.8% of the 32 MB of main memory). In
the case of 1600×1600 data matrices, the quantity of required memory is of 29.3 MB
approximately, which represents the 91.6% of the 32 MB of main memory.

Thus, all computers underwent experiments with square matrices of order n = 100, 200,
400,800 and 1600.In the case of computers with a main memory of 64 MB or 512 MB,
and in order to have referencevalues to be used in speedupcalculations, experiments with
greater matrices were also carried out. In addition,sincethere is always the tendency to use
computers at their capacity limit , experiments were also carried out with the possible
maximum matrix sizes. As expected, this depends not only on the size of the main memory
installed but also on the swap space setup in the system.

For computers with 64 MB of main memory, the sizes considered as representative of the
problems requiring most or all the maim memory correspond to the values of n = 1900,
2000,2200,and 2400.These matrix sizes imply the following approximate percentages of
memory requirements (assuming a total of 64 MB): 65%, 72%, 87%, and 103%,
respectively. It should be born in mind that it is possible to test values near or above 100%
of the main memory requirements depending on the size of the setup swap memory.

Even though when data take up all or most of the main memory it can be said that the
computer is being used to its maximum (at least in terms of data in main memory), the
extreme case is evident when the sizes exceeding the main memory are taken into account
and when there is a need for the swap memory space. In 64 MB main memory computers,
the maximum size with which the matrix multipl ication could be carried out was for
n = 3200,and, as reference, tests were also performed with n = 3000.These matrix sizes
imply the following approximate percentages of memory requirements (assuming a total of
64 MB): 183% and 161%, respectively. As stated before, the maximum sizes of the
problem depend on threeaspects: a) installed main memory, b) setup swap space, and c)
operating system; the latter being that which decides when a processis to be cancelled for
lack of memory. And these three aspects match the speediest machines of the CeTAD
network and the LIDI network.

78

Parallel Computing in Local Area Networks Chapter 4: Experimentation

For 512 MB main memory computers, the sizes considered as representative of the
problems requiring most or all the main memory correspond to the values of n = 4000,
5000, 6000, and 7000. These matrix sizes imply the following approximate memory
requirements (taking a total of 512MB): 36%, 56%, 80%, and 110% respectively. Notice
that it is possible to test with values near or above the 100% of the maim memory
requirements depending on the size of the swap memory setup.

In 512 MB main memory computers, the maximum size with which the matrix
multiplication could be carried out was for n = 9000,and, for reference, test with n = 8000
were also carried out. These matrix sizes imply the following approximate percentages of
memory requirements (assuming a total of 512 MB): 181% and 143%, respectively.

4.2.2 CeTAD Local Area Network

The performance values obtained for each of the CeTAD local network computers are
shown in Figure 4.4.

Figure 4.4: CeTAD Computers Performance.

Figure 4.4 shows that:
p purmamarca is the computer with the highest relative speed and is approximately 30

times faster in terms of processing than prited, with the lowest capacity.
p In referenceto cetadfomec1, only cf1 appears, sincethe performanceof cetadfomec2 is

the same.
p It can be proved that, with the values of Table 4.1, the clock frequency at which the

computers operate does not necessarily determine the processing capabilit y (at least in
floating point operations).

The performance characteristics and/or the values obtained are explained in detail in
Appendix B.

The computer with highest processing power - purmamarca – underwent tests with

79

100 200 400 800 1600

0

50

100

150

200

250

300

350

purmamarca

cf1

sofia

fourier

Josrap

tilcara

paris

cetad

prited

n

M
fl

op
/s

Chapter 4: Experimentation Parallel Computing in Local Area Networks

greater matrices and the results obtained appear in Figure 4.5.

Figure 4.5: Purmamarca’s Performance for a Matrix Multiplication.

where:
p The memory proportion necessary for containing the threematrices is indicated between

brackets. For n = 1900, for instance, the 65% of the memory is necessary for data
storage.

p The largest matrix size for which swap space is not used appears highlighted (fill ed
differently from the other bars). It must be noticed that, when the spaceto contain the
data of the matrices exceeds the 72% of the memory, the swap spaceis used and, thus,
the performance decreases.

4.2.3 LQT Local Area Network

Performance values for LQT local network computers are shown in Figure 4.6, where
p lqt_07 and lqt_06 computers are the speediest and the relative differences are not that

great as in CeTAD computers.
p Since there are no spaceproblems for bar representations, all machines are included,

even though lqt_06 is equal to lqt_07,and lqt_03 is equal to lqt_04. It must be noticed
that, in the context of PCs built in parts (even when computers are “equal” in terms of
processor, system clock frequency and quantity of installed memory), it is still possible
that they might have different performance because, for instance, they have different
system bus speed.

p Once more, the operation clock frequency does not necessarily determine the relative
speed of machines (see Table 4.2).

80

100 200 400 800 1600
(0.46)

1900
(0.65)

2000
(0.72)

2200
(0.87)

2400
(1.03)

3000
(1.61)

3200
(1.83)

0

50

100

150

200

250

300

350

n

M
fl

op
/s

Parallel Computing in Local Area Networks Chapter 4: Experimentation

Figure 4.6: LQT Computers Performance.

The computer with greater processing power, lqt_07, underwent tests with bigger matrices,
and the results obtained appear in Figure 4.7.

Figure 4.7: lqt_07 Performance for a Matrix Multiplication.

Figure 4.7 shows that:
p The largest matrix size for which swap space is not used during the processing is

n=5000. The memory destined to the storage of 5000x5000-element matrix data
represents approximately the 56% of the whole memory.

p Again, the performance is reduced as more swap memory spaceis needed, even though
this fall i s not so abrupt with respect to that produced in purmamarca (Figure 4.5).

81

100 200 400 800 1600

0

100

200

300

400

500

600

700

lqt_07

lqt_06

lqt_02

lqt_01

lqt_03

lqt_04

n

M
fl

op
/s

100 200 400 800 1600 4000
(0.36)

5000
(0.56)

6000
(0.80)

7000
(1.10)

8000
(1.43)

9000
(1.81)

0

50

100

150

200

250

300

350

400

450

500

550

600

650

n

M
fl

op
/s

Chapter 4: Experimentation Parallel Computing in Local Area Networks

4.2.4 LIDI Local Area Network

Given the homogeneity of LIDI’s machine, Figure 4.8 shows the results obtained in one of
the machines -lidipar14 - for all matrix sizes.

Figure 4.8: Performance of lidipar14 for a Matrix Multiplication.

The performance of LIDI network computers is similar to that of purmamarca of the
CeTAD local network since:
p The largest matrix size for which swap memory spaceis not used during the processing

of matrix multiplication is n = 2000,all of which is coherent since they have the same
main memory installed: 64 MB.

p From the very moment in which the swap memory spaceis used during the processing
of a matrix multiplication, the performance falls abruptly.

However, LIDI local network computers are relatively faster, since they are capable of
processing in the ratio of 580 Mflop/s, whereas purmamarca does not reach 350 Mflop/s.

Since computers of the LIDI local network are all equal, they can be used, and are used
indeed, as a referenceof the matrix multiplication algorithm in homogeneous networks. In
addition, this network is the most suitable for parallel computation since the
interconnection network is of 100 Mb/s (the others are of 10 Mb/s); also, in the wiring, a
switch is used instead of one or more hubs.

4.3 Parallel Performance Analys is of Local Area
Networks

There has been always an attempt to define and compute analytically the optimum or
potential performance of parallel computers and also the performance attainable with a

82

100 200 400 800 1600
(0.46)

1900
(0.65)

2000
(0.72)

2200
(0.87)

2400
(1.03)

3000
(1.61)

3200
(1.83)

0

50

100

150

200

250

300

350

400

450

500

550

600

n

M
fl

op
/s

Parallel Computing in Local Area Networks Chapter 4: Experimentation

parallel algorithm over a parallel computer in particular. The most important reasons for
computing analytically the best possible performance of a parallel computer are:
p Estimating in advancewhether the parallel computer is capable of providing a result in a

given time. It would not be useful, for instance, to know in two weeks time the weather
prediction of a given day of the next week.

p Assessing and comparing the parallel machines in order to, for instance, compute the
cost/benefit relation between of each of them.

On the other hand, the analytical estimation of a parallel algorithm performanceis useful in
order to determine whether the designed algorithm is capable of obtaining the maximum
performanceof the computer for which it is implemented, and where it is executed to solve
the posed problem.

Since
p the performance characteristics of each machine of all l ocal networks,
p the performance characteristics of the interconnection network of each of the local

networks, and
p the main characteristics of the parallel computing algorithms for the calculation of the

matrix multiplication (with or without overlapped messages, for instance),
are already known, the best possible value for the speedupratio can be calculated and used
as reference in the subsequent assessment of the experimentation results. In a way, the
analytical calculation of the best speedup value (or optimal speedup) tries to predict the
performance of the workstation networks used as parallel machines.

4.3.1 Actual Speedup Calculation

The basic ideaof a parallel computer speedup ratio is to determine how better a parallel
computer is in terms of capacity in relation to a processor or a sequential computer. The
classical definition of speedup is:

Execution time of the best sequential algorithm/ Parallel execution time

Thus, the Execution time of the best sequential algorithm, together with the Parallel
execution time, should be determined. In the heterogeneous context of the installed
computer networks, the

Execution time of the best sequential algorithm

“becomes” [125] the

Execution time of the best sequential algorithm in the fastest computer

or, briefly,

Execution time in the fastest computer

directly assuming that the best algorithm is going to be used. Basically, it is the best

83

Chapter 4: Experimentation Parallel Computing in Local Area Networks

possible sequential execution time in the computer-station network, i.e. using
p the computer with greatest computing capabilit y, and
p the best sequential algorithm.

In the case of the three local networks already presented, this task is solved, since:
p In CeTAD local network, purmamarca is that of highest relative speed, and the

experimentationhas already determine its capacity in Mflop/s which, in turn, determines
unambiguously the computing time.

p In LQT local network, lqt_07 is that of highest relative speed, and the experimentation
has already determined its capacity in Mflop/s which, in turn, determines
unambiguously the computing time.

p In LIDI local network, all the computers are equal, and the experimentation has already
determined thecapacity in Mflop/s of lidipar14 that, in turn, determines unambiguously
the computing time.

Similarly, the parallel execution time is determined by experimentation, using the
available machines of each of the local area networks.

4.3.2 Optimal Speedup Calculation

From the theoretical point of view, the best that can happen in a parallel machine is that all
the processors are used all the time or that all the processors are used to their maximum
computing capacity. This leads to the assumption that the computing capabilit y of the
parallel computer is equal to the sum of the computing capabiliti es of each processor being
part of it. In the context of parallel machines with homogeneous processors, this means that
using one more processor implies a proportional reduction of the parallel execution time.
That is, if P processors are used, the best parallel execution time is given by

Parallel execution time = Execution time of the best sequential algorithm / P

In fact, this implies no more than the assumption that the computing power of the parallel
machine with P processors is P times higher than the computing power of the sequential
machines (a processor). In other words, speedup consists in identifying the relation
between the power of a machine with a processor and a parallel machine with P processors.
In this way, the optimal speedup in the classical parallel homogeneous computers is equal
to the quantity of processors that are used. This is the same as defining the “ the relative
computing power of the parallel machine with respect to a processor” or, directly, the
optimal speedup value as

OptimalSpeedup,{
i,0

P11

rpw� proci � (4.1)

where proc0, proc1, ..., procP-1, are the P processors of the parallel machine and rpw(proci)
is the relative computing power of proci in relation to the rest or any of the other
processors. In the context of numerical applications, it can be computed using the

84

Parallel Computing in Local Area Networks Chapter 4: Experimentation

computing power in Mflop/s as in the previous Chapter, but when assuming that the
processors are equal,

rpw(proci) = 1; ∀ i = 0, ..., P-1 (4.2)

and, thus

OptimalSpeedup = P (4.3)

In the context of numerical applications, this is equal to the optimal speedup calculation
using directly the computer powers of the sequential and parallel machine in Mflop/s, i.e.
as

OptimalSpeedup,
{
i,0

P11

Mflop! s� proci �

Mflop! s� proc0�
(4.4)

In the context of parallel machines with heterogeneous processors, it is not possible to
assert what Equation (4.2) expresses, sinceprocessors have or may have a different relative
speed. Thus, the Optimal Speedup must be calculated according to Equation (4.1), i.e.
using the calculation of each rpw(proci), or as stated in the previous Chapter, pw(wsi),
given by

pw�wsi �,
Mflop!s�wsi �

máx
j,0..P11

�Mflop!s�ws j ��
(4.5)

And, similarly, Equation (4.4) is to be adapted to the heterogeneous environment as shown
by Equation (4.6), which determines as reference the processor with highest computing
power of those used.

OptimalSpeedup,
{
i,0

P11

Mflop! s�wsi �

máx
j,0..P11

�Mflop! s�ws j ��
(4.6)

In this way, two underlying ideas in the interpretation of speedup graphics arising from
homogeneous parallel machines are also lost:
p It can no longer be asserted that the theoretical maximum is given by line y = x, or that

for x number of processors the theoretical speedup maximum is given by x. In the
heterogeneous environment it is no longer possible to relate the processors number with
the complete parallel machine computing power. More specifically, adding a processor
means adding computing power not necessarily related to the total number of processors
but rather with the sum of the processors computing powers.

85

Chapter 4: Experimentation Parallel Computing in Local Area Networks

p It can no longer be asserted that a linear speedup could be reached as a minimum, or
that, even when the speedupis not precisely equal to the number of processors, it should
be directly proportional to the number of processors. It is not longer possible to keep
this idea for the same reason stated above: it is not possible to relate or quantify the
relation between the number of processors (or machines) and the parallel machine
computing power.

Figure 4.9shows themaximal speedupvalues in a network of five computers ws0, ..., ws4,
each with their relative computer power given by

pw(ws0) = 1.0 pw(ws1) = 0.8 pw(ws2) = 0.7
pw(ws3) = 0.5 pw(ws4) = 0.3

Figure 4.9-a) shows with bars the speedup values, and in Figure 4.9-b) the values are
connected with lines, showing quite more clearly how the maximum possible speedup for
these five computers “moves away” from the line y = x as computers are added. In addition,
Figure 4.9 shows the tendency to incorporate the fastest computers of the available. In the
caseof using computers ws0 andws1, ws2 is more likely to be incorporated sinceit has the
highest computing power of the threeavailable: ws2, ws3, and ws4; hence, in the speedup
graphics, computers are added from “greater to lesser” according their computing capacity
– unless some other criterion is established.

 a) b)

Figure 4.9: Speedup of Five Heterogeneous Computers.

It is important to notice that this way of computing the maximum speedup value assumes
that all computers, and in particular the speediest, always have the same computing
capacity. When the computers are used to their maximum capacity set up in terms of swap
space, it is possible and very likely that problems greater than the allowed by the main
available memory will be solved and the swap spaceused. This, in turn, generates two
well -known drawbacks from the point of view of performance:
p While the computation is carried out, there is more activity in the operating system due

86

ws0 +ws1 +ws2 +ws3 +ws4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

máximo y=x

ws0 +ws1 +ws2 +ws3 +ws4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

máximo y=x

Parallel Computing in Local Area Networks Chapter 4: Experimentation

to the data handling that should be transferred from and towards the swap space
(generally, in the disk).

p It is possible and, in fact, very likely that theprocessor will have to wait for the data that
are in swap space(disk) until they are transferred to the main memory from where the
processor can make use of them in order to operate.

And, in fact, the performancedeclines markedly, though the quantification of this decrease
depends on the computer (disk speed, input/output subsystem, etc.), and also on the
problem (data access pattern, amount of data in swap space, etc.).

Thus, if the problem solved in the sequential computer or in the computer with highest
computer capacity - in the case of the local networks - implies the use of swap space, a
running time affected by the use of swap space will be taken as reference. When the
possibilit y of executing in parallel in local network computers is taken into account, the
distribution of the problem data is implicitly assumed and, thus, it is likely that the same
size of problem will be solved so that each machine uses only the main memory and not the
swap memory (with the implicit decrease of the performance). Therefore, depending on the
size of the problem and the used machines, the obtainable speedup value can be greater
than the optimum calculated according to Eq. (4.1). In other words, the optimal speedup
value computed according to Eq. (4.1) assumes that the speediest computer always has the
computing capacity established by the execution of part of the problem in swap spaceor,
similarly, is slower than its real speed (when the wholeproblem can be handled in the main
memory without recurring to the swap space).

Since sequential experiments implying the use of swap space are carried out, a non-
“deviated” optimal value for the speedup should be provided. In the context of numerical
problems, it is convenient to recur once more to the ideaof computing capacity given in
quantity of floating points operations per second, or Mflop/s. Since Mflop/s are used
directly for this “new” way of optimal speedupcomputing, the quantity of operations to be
carried out should also be taken into account. Recalli ng the example of the five computers
ws0, ..., ws4, the capacity of each of them should be now used in terms of Mflop/s that
could be for instance,

Mflop/s(ws0) = 1000
Mflop/s(ws1) = 800
Mflop/s(ws2) = 700
Mflop/s(ws3) = 500
Mflop/s(ws4) = 300

In addition, it is also necessary to know the number of floating point operations required to
solve the problem, which could be, for instance, 109. Hence, if the computer with highest
capacity, ws0, is able to solve the problem without recurring to the swap space, it then
solves the computations to its maximum capacity, i.e. in the ratio of 1000x106 operations
per second. In this case, the maximum speedup “coincides” with the computed using
Eq.(4.1), i.e.:

OptimalSpeedup,{
i,0

4

pw� proci �,{
i,0

4 Mflop! s�wsi �

1000
,3.3

87

Chapter 4: Experimentation Parallel Computing in Local Area Networks

If, on the contrary, the computer with highest capacity, ws0, uses the swap spaceduring the
resolution of the problem, it no longer carries out the computations to its maximum speed.
Assuming that the degradation due to the use of the swap spaceduring the computations is
of 30%, this implies that computations arecarried out in the ratio of 700x106 operations per
second, thus assuming that during the parallel execution all computers operate to their
maximum capacity; using Eq. (4.4), the maximum speedup would be:

OptimalSpeedup,
{
i,0

4

Mflop! s�wsi �

700
,4.71

which is apparently higher to that computed according to the values pw(ws0), ..., pw(ws4).
In any case, there would be two points of view for the calculation of the optimal speedup:
that computed according to Eq. (4.1), and that computed by Eq. (4.3). The former depends,
in turn, on the relative computer powers, pw(wsi), computed according to Eq. (4.5), which
assumes that computers have always the same computing capacity, and which could be
called “computing optimal speedup according to relative speeds” , or Comp(rsf).

Comp�rsf �,{
i,0

P11

pw� proci � (4.7)

The underlying ideasupporting the computation of Comp(rsf) is basically the following: if
a machine is added, its relative computing power is added to that of highest capacity.
Following the example given by ws0, ..., ws4, this means that, if instead of using only ws0,
ws0 and ws1 are used, there should be a (parallel) computer with 1.8 times the capacity of
ws0.

The second point of view for the calculation of the optimal speedup is that computed by
Eq. (4.4), which assumes that all computers always run at their maximum capacity,
independently of whether it is necessary to use the swap spaceduring the processing. Thus,
it could be called “computing optimal speedup according to each computer’s computing
capacities given in Mflop/s” , or Comp(Mf).

Comp�Mf �,
{
i,0

P11

Mflop! s�wsi �

max
j,0..P11

�Mflop! s�ws j ��
(4.8)

The underlying ideasupporting the computation of Comp(Mf) is basically the following: if
a machine is added, its computing power is directly added in Mflop/s. Following the
example given with ws0, ..., ws4, this means that, instead of using only ws0, ws0 and ws1
are used; then, there should be a (parallel) computer with a computing capacity of
1000+800 Mflop/s = 1800 Mflop/s, which implies that the parallel computer has
1800/7002.57times the capacity of ws0, since the reference value in terms of Mflop/s of

88

Parallel Computing in Local Area Networks Chapter 4: Experimentation

ws0 is 700 Mflop/s, obtained by using the swap space.

It is evident that the optimal speedup computation will be the same, Comp(rsf)=Comp(Mf)
if the maximum Mflop/s values are taken as reference, i.e. without using the swap spaceof
each machine. Comp(rsf) is derived directly from the classical way of computing speedup,
and Comp(Mf) should be viewed rather more carefully when the sequential running time is
affected by the use of the swap space. In a way, when the swap memory spaceis used
during the sequential running, Comp(Mf) could be understood as what has been
occasionally called “superlinear speedup”. Following the example from this point of view:
p Solving a problem in ws0, the running time derived from ws0’s capacity is obtained

when using the swap space, i.e. directly proportional to 700 Mflop/s.
p Solving the same problem with parallel computation and using ws1, the problem is

“expected” to be solved considering a computer with a capacity of (700 + 0.8x700)
Mflop/s = 1260 Mflop/s, since ws1 has 0.8 times the computing capacity of ws0.

p If the distribution of the whole problem between ws0 and ws1 makes the use of the
swap spaceunnecessary, both computers solve computations to their maximum capacity
and, thus, the parallel running time would be proportional to (1000+800) Mflop/s =
1800Mflop/s and, thus, the running time will be less than the “expected” considering
only the relative speeds.

Figure 4.10 shows the different values of optimal speedups, Comp(Mf) and Comp(rsf),
taking into account the five computers of the example, whose performance characteristics
are summarized in the following table,

Computer Mflop/s (Maximum) pw

ws0 1000 1

ws1 800 0,8

ws2 700 0,7

ws3 500 0,5

ws4 300 0,3

and also considering the fact that the computer with highest computing capacity uses the
swap spaceto solve the given problem with its subsequent performance penalization of
30%. In Figure4.10-a) thebars represent thevalues, and in figure4.10-b), the lines join the
values showing clearly that:
p The different ways of computing the optimal speedup provide various values if the

sequential solution implies the use of the swap space.
p Line y = x does not provide any meaningful information in the context of heterogeneous

processors.

Lastly, it should be noticed that, in the optimal speedup computation there is no
consideration in terms of communications; only the computing capacity of all the
processors (computers) used is taken into account.

89

Chapter 4: Experimentation Parallel Computing in Local Area Networks

 a) b)

Figure 4.10: Computations of Optimal Speedups for Five Computers.

4.4 Analys is of Algorithms Performance

Normally, the analytical computation of parallel algorithms performance has two general
purposes:
p To determine whether the algorithm is capable of taking advantage of the parallel

computer’s performance on which it can be implemented.
p To compare and assess different designed algorithms for the same task.

The analytical computation of the algorithms performance not only takes (or should take)
into account the computers computing characteristics but also incorporates at least another
factor affecting the performance: communications. Even though the parallel computer
architecture is already known in detail , it is really diff icult to quantify the effect
communications have on the performances of the applications to be solved. However, the
situation changes when a specific parallel algorithm is designed, since this last clearly
determines what is needed in relation to communications and the synchronization among
processes. In general, synchronization points among processes are considered as a type of
communication in particular.

Although they are very similar, the algorithms to be considered for the analysis are two,
and have been already presented in the previous chapter with:
p the explicitl y sequential messages with respect to computation. That is, at any moment,

a computer can be performing one of the following two tasks:
� Local computation, i.e. solving a partial computation of the result matrix portion

that should be computed.
� Solving data communication, more specifically sending and receiving a

90

ws0 +ws1 +ws2 +ws3 +ws4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Comp(Mf) Comp(rsf) y=x

ws0 +ws1 +ws2 +ws3 +ws4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Comp(Mf) Comp(rsf) y=x

Parallel Computing in Local Area Networks Chapter 4: Experimentation

broadcast message.
p overlapped messages, so most of messages can be sent while the local computation is

being carried out (simultaneously). In fact, in order to make this true, each computer
should be capable of computing and delivering data at the same time.

Both algorithms were already presented in the previous Chapter, together with the
analytical form for each performance computation; they will be called SeqMsg and
OverMsg, respectively. In all of the cases, it is assumed that computing periods are carried
out to the maximum computing capacity of the involved computers.

4.4.1 SeqMsg: Sequential Computing and Communication

According to what has been explained in the previous Chapter, the parallel time of the
algorithm during which the computing and communication periods are sequentially carried
out is given by

tpar_seqmsg = Pα + β n2 +
2n3

1n2

pw

where
p P is the number of computers.
p n is the order of the square matrices that are multiplied.
p α is the latency time of the communication network.
p 1/β is the asymptotic bandwidth (transfer rate) of the communications network,

expressed in terms of the type of the multiplied matrices elements.
p pw is the sum of all of the computers’ computing capacities used, expressed in terms of

Mflop/s, i.e.

pw,{
i,0

P11

Mflop!s�wsi � (4.9)

Even though it is not explicitl y defined, there is a tendency to assume that
p The latency time is not so important provided that messages are big enough, or, what

would be thesame, the problem is big enough, sincethemessages size is directly related
to the size of the problem [71] [52] [124].

p The asymptotic bandwidth of the communications network is independent of the
number of processes that are communicated with a broadcast or, more specifically, the
number of receiving processes of each broadcast message. This is possible in Ethernet
networks provided that communication routines take advantage of the communication
hardware characteristics.

Thus, the way of computing the parallel running time can be simpli fied eliminating the
latency time of messages completely (or, what would be the same, considering equal to
zero), thus obtaining

91

Chapter 4: Experimentation Parallel Computing in Local Area Networks

tpar_seqmsg = β n2 +
2n3

1n2

pw

And this parallel time is used for thecomputationof theoptimal speedupobtainableby this
algorithm in a network of workstations, giving place to what will be called SeqMsg(Mf).

4.4.2 OverMsg: Overlapped Computing and Communications

According to what has been explained in the previous Chapter, the parallel time of the
algorithm during which most of the computing and communication periods are carried out
in an overlapped (simultaneous) manner is given by

tpar_overmsg = tbcast + (P-1) max(tbcast, tcomp) + tcomp

where

tbcast = α + β n2/P and tcomp ,
2n3

1n2

P pw

And this parallel time is used for thecomputationof theoptimal speedupobtainableby this
algorithm in a network of workstations, given place to what will be called OverMsg(Mf).

By this way of computing analytically the parallel running time, it is assumed that:
p All computers are capable of overlapping the computation with communications.
p Communications overlapping does not affect the local computing time nor the

communication time of the broadcast messages.
It should be noticed that both assumptions are really diff icult to prove, at least in standard
computers of the installed local networks.

4.5 Local Area Networks and Algorithms

Since we already count with:
1. the sequential performance of all computers of every local network: Mflop/s(wsi);
2. the analytical way to compute the performanceof each of the local networks Comp(Mf)

and Comp(rsf);
3. the analytical way of the two proposed algorithms: tpar_seqmsg and tpar_overmsg;
4. the asymptotic bandwidth estimation -at least at hardware level- of all the local

networks: Mb/s of the Ethernet networks;
it is now possible to estimate the performance of both each network and these networks’
algorithms, at least with respect to the theoretical maximum.

92

Parallel Computing in Local Area Networks Chapter 4: Experimentation

4.5.1 CeTAD Local Area Network

Figure 4.11 shows the maximum speedup values to be considered in the CeTAD local
network when the main memory is capable of containing all the data of the problem, so that
the utili zation of theswap memory becomes unnecessary during computations. In this case,
the reference computer (that of highest computing capacity) is purmamarca, and the
matrices size is n = 2000.In addition, since an Ethernet network of 10 Mb/s is used, it is
assumed that, due to the degradation caused by all the layers of the operating system, data
can be transferred among user processes in the ratio of 220bytes (1 MB) per second.This
could be considered as an optimistic, though acceptable, assumption since the maximum
values are estimated.

Figure 4.11: Speedup Analysis of the CeTAD network for n = 2000.

Figure 4.11 shows that:
p Computers’ relative computing capacity provides a reasonable order to use them in

parallel. When a given quantity of computers is used for parallel computation, there is a
tendency to include those of greater computing capacity among the available.

p Computers cetadfomec1 and cetadfomec2 are shown with the names cf1 and cf2,
respectively.

p As expected, Comp(Mf) and Comp(rsf) do coincide, since the reference computing
capacity of purmamarca is the maximum (approximately 324 Mflop/s, Figure 4.33)
because it does not use the swap space during the sequential running.

p The speedupcomputed for the algorithm with the overlapped messages OverMsg(Mf) is
similar to that of the computation, until the computer sofia was used; however, when
adding more computers there is almost no improvement in terms of performance. In
other words, as from the addition of four ier, communication times are longer than those
of the computation and, thus, there is almost no improvement in terms of parallel
running time by the incorporation of more computers.

p The relative weight of the communication time in relation to the computing time is
evident for the algorithms with sequential messages and computation. The computed
speedup for this algorithm, SeqMsg(Mf), thus shows it through the difference in the

93

 purmamarca +cf1 +cf2 +sofia +fourier +Josrap +tilcara +paris +cetad +prited
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
Comp(Mf)

Comp(rsf)

OverMsg(Mf)

SeqMsg(Mf)

Mem(1=> ok)

Chapter 4: Experimentation Parallel Computing in Local Area Networks

values in relation to the other speedup computations, including that of the algorithm
with overlapped messages that takes into account at least part of the communications
total time.

p The whole computing power of the ten computers is slightly less than 4.5 times the
computing power of purmamarca.

Also, Figure 4.11 shows an “empirical” estimation of memory requirements indicated in
the graphic as Mem (1 => ok). When it has a value equal to 0, it is likely that, in one or
morecomputers, it will be necessary to recur to the swap spaceduring theexecution.When
it has a value equal to 1, it is likely that the swap spacewill not be necessary in any of the
computers during the algorithm execution. Notice that in the graphic it appears equal to 0
only when two computers are used in parallel: purmamarca and cf1. This is due to the
following facts:
p When purmamarca is only used –which has a main memory of 64 MB (Table 4.1)–,

experimentations show that it is not necessary to use the swap space.
p When cf1 –which has a memory of 32 MB - is added, it is likely that purmamarca will

not need to recur to the swap space, though cf1 will .
p When cf2 is added, there already exist threemachines among which data are distributed

and, from this moment, it is actually possible that there will not be any problems for the
memory.

Even though this memory estimation is not so precise (and, in fact, it is really diff icult to
make one which really is), it is always useful to have at least one reference ideasince, as
previously explained, the computing capacity can be really affected.

Figure 4.12 shows the maximal speedup values to be considered in the CeTAD local
network for the maximum problem size that can be solved by the computer with greatest
computing capacity (recurring to the swap memory). The reference computer is still
purmamarca and the size of matrices is n = 3200.As for the previous estimation, it is
assumed that the data can be transferred among user processes in the ratio of 220 bytes
(1 MB) per second.

Figure 4.12: Speedup Analysis of the CeTAD Local Network for n = 3200.

94

 purmamarca +cf1 +cf2 +sofia +fourier +Josrap +tilcara +paris +cetad +prited

3

5

8

10

13

15

18

20
Comp(Mf)

Comp(rsf)
OverMsg(Mf)

SeqMsg(Mf)

Mem(1=> ok)

Parallel Computing in Local Area Networks Chapter 4: Experimentation

Since the greatest problem (with 3200x3200-element matrices) that can be solved by
purmamarca implies the use of the swap space, the reference computing capacity is of
approximately 74 Mflop/s (Figure 4.33). Therefore, it is no longer possible for Comp(Mf)
to coincide with Comp(rsf); more specifically, the optimal speedup value computed with
the maximal computing capacity (in Mflop/s) will necessarily be greater than the optimal
speedup value taking into account the relative speeds among computers. This implies that
the maximal speedupvalue using all CeTAD machines (10 computers) results in a parallel
computer that has almost 19 times purmamarca’s computing capacity for matrices of
3200x3200 elements, i.e. when purmamarca has to recur to the swap spaceduring the
execution.

In addition, from Figure 4.12 it can be said that:
p The values of Comp(rsf) do not change in relation to those of Figure 4.11,sincerelative

speeds are taken as equal.
p Assuming that each computer can eff iciently solve its computations and

communications simultaneously, the values of OverMsg(Mf) are almost equal to those
of Comp(Mf).

p The weight of the communication time is still relatively high in relation to the
computing time, and this is evidenced by the differences between the values of
Comp(Mf) and SeqMsg(Mf). More specifically, when the communication time is taken
into account plus the computing time (as it should be done for the algorithm with
message transmission and computing periods solved sequentially), the optimal speedup
values are markedly reduced with respect to those obtained with the sum of the
computing capacities.

p Since for n = 3200,purmamarca “ becomes” a computer with much lesser computing
capacity than for n = 2000,even with sequential computations and communications the
profit is expected to be significant, and rather higher than expected according to relative
speeds. The rather lower values of Comp(rsf) thus show it.

p The estimation of memory requirements in each computer - Mem in the graphic- shows
that until only all machines are used, the requirement for swap memory becomes less
necessary in all computers. This is mainly due to the fact that two of the computers with
highest relative computing capacity, cf1 and cf2, have low memory capacity in relation
to that with the highest computing capacity (purmamarca).

4.5.2 LQT Local Area Network

Figure 4.13 shows the maximum speedup values to be considered in the LQT local
network when the main memory is capable of containing all the data of the problem, so that
the use of the swap memory becomes unnecessary during computations. In this case, the
reference computer (that of highest computing capacity) is lqt_07 and matrix sizes are of
n = 5000.Also, in this case, sincean 10 Mb/s Ethernet network is used, it is assumed that
due to the degradation produced by all the operating system layers, data can be transferred
among user processes in the ratio of 220 bytes (1 MB) per second.

95

Chapter 4: Experimentation Parallel Computing in Local Area Networks

Figure 4.13: Speedup Analysis of the LQT Network for n = 5000.

The parallel computer obtained using all the machines provides, in the best of the cases,
slightly more than 4.5 times the capacity of lqt_07, approximately 2.9Gflop/s. Oncemore,
the analytical computation of the maximum, possible speedup obtainable with the
sequential computation and communication algorithm shows the relative weight of the
communication time in relation to the computing time, and it is kept in values
approximately equal to the half of the other estimations values.

Figure 4.14 shows the maximum speedup values to be considered in the LQT local
network for the maximum size of problem that can be solved by the computer with highest
computing capacity (recurring to the swap memory). The referencecomputer is still lqt_07
and the size of matrices is n = 9000.As for the previous estimation, it is assumed that data
can be transferred among user processes in the ratio of 220 bytes (1 MB) per second.

Figure 4.14: Speedup analysis of the LQT Network for n = 9000.

From Figure 4.14, it can also be deduced that:

96

 lqt_07 +lqt_06 +lqt_02 +lqt_01 +lqt_03 +lqt_04

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
Comp(Mf)

Comp(rsf)

OverMsg(Mf)

SeqMsg(Mf)

Mem (1=> ok)

 lqt_07 +lqt_06 +lqt_02 +lqt_01 +lqt_03 +lqt_04

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0
Comp(Mf)

Comp(rsf)

OverMsg(Mf)

SeqMsg(Mf)

Mem (1=> ok)

Parallel Computing in Local Area Networks Chapter 4: Experimentation

p When all computers are used to solve the multiplication problem of 9000×9000element
matrices, the running time could be reduced more than six times the running time of
lqt_07, even when, according to the relative speeds, this reduction might not reach five
times.

p If it is possible to overlap completely local computations with communications, then the
possible and attainable maximum speedup is similar to the absolute maximum. In other
words, the computing time is equal or higher than that of communications.

p When messages and local computations are carried out sequentially, the running time
will be longer than expected, taking into account computers’ relative speeds as from the
addition of lqt_01, i.e. Comp(rsf) > SeqMsg(Mf) as from the addition of lqt_01.

p According to memory estimations, it would not be necessary to recur to the use of swap
memory as from the addition of lqt_02.

4.5.3 LIDI Local Area Network

Figure 4.15 shows the maximum speedup values to be considered in the LQT local
network when all the data of the problem can be contained in the main memory, so that the
use of the swap memory becomes unnecessary during computations. In this case, the
reference computer (that of highest computing capacity) is lidipar14, but it should be
remembered that all computers are equal, and the size of matrices is n = 2000.Unlike the
previous local networks, a 100 Mb/s Ethernet network is used assuming that, due to the
degradation caused by all the operating system layers, data can be transferred among user
processes in the ratio of 10×220 bytes (10 MB) per second. As in the previous cases, an
optimistic, though acceptable, assumption could be considered because maximum values
are being estimated.

Figure 4.15: Speedup Analysis of LIDI Network for n = 2000.

Speedup values appearing in Figure 4.15 more or less coincide with those of classical
(homogeneous) parallel computers, since:
p Comp(rsf) values correspond to line y = x.

97

 lidipar14 +lidipar13 +lidipar12 +lidipar9 +lidipar8 +lidipar7 +lidipar6 +lidipar5

1

2

3

4

5

6

7

8
Comp(Mf)

Comp(rsf)

OverMsg(Mf)

SeqMsg(Mf)

Mem (1=> ok)

Chapter 4: Experimentation Parallel Computing in Local Area Networks

p At least until the addition of lidipar5, all maximum estimated values for the speedup
follow a lineal growing pattern with respect to the quantity of processors (computers)
used, even considering the sequential computation and communications algorithm.

Also, from Figure 4.15, it can be said that:
p Comparing this network to the previous ones, and having an interconnection network

ten times better in terms of bandwidth, communications do not have such a big relative
weight. In fact, the algorithm carrying out computation with communications
overlappedly has an optimum speedup equal to the computed without taking into
account communications, OverMsg(Mf) ≅ Comp(Mf).

p With the algorithm carrying out sequential computation and communications, a
(parallel) computer with slightly more than 5.5 times the computing capacity of
lidipar14 (or any of the others, since they are all equal) can be obtained by using the
eight available computers - in the best of the cases.

p As computers are all equal, the relation between communications and computing time
and the maximum speedup values of the sequential computation and communications
algorithm - SeqMsg(Mf) - can be more clearly identifiable than in the previous cases
(CeTAD and LQT). As the number of machines increases, the same work is distributed
among all of them. Consequently, the total computing time decreases (there is more
quantity of computers processing simultaneously), though the total communication time
is still the same. Thus, as more machines are added, the communication time affects
more significantly the total running time (computation plus communications).

In order to exempli fy this last point, the specific values computed for four and eight
machines can be taken into account. Independently of the quantity of computers that are
used, when the size of the matrices is the same (in this case n = 2000), the quantity of data
that are communicated is the same sincethe data of matrix B should always be transmitted
among computers. The estimated transmission time of matrix B (sum of the algorithm
broadcast messages times), in a 100 Mb/s Ethernet network, is of approximately 1.5
seconds. When lidipar14, lidipar13, lidipar12, and lidipar9 are used, the estimated
computing time is approximately 13.8 seconds. When the computers lidipar8, lidipar7,
lidipar6, and lidipar5 are added to the previous, the estimated computing time is of 3.4
approximately. Thus when messages and communications are run sequentially:
p The total running time, when four computers are used, is (summing computing time and

communication time) 1.5 + 13.8 = 15.3 seconds. This implies that aroundthe 10% of
the total running time is used for communications.

p The total running time, when eight computers are used, is (summing computing time
and communication time) 1.5 + 3.4 = 4.9 seconds. This implies that aroundthe 30% of
the total running time is used for communications.

Figure 4.16 shows the maximum speedup values to be considered in the LIDI local
network for the maximum size of problem that can be solved by the computer with highest
computing capacity (recurring to the swap memory). The reference computer is still
lidipar14 and the matrices are of 3200×3200elements. As for the previous estimation, it is
assumed that data can be transferred among user processes in the ratio of 10×220 bytes
(10MB) per second.

98

Parallel Computing in Local Area Networks Chapter 4: Experimentation

Figure 4.16: Speedup Analysis of the LIDI Network for n = 3200.

Apart from showing that the maximum speedupvalues computed by using relative speeds -
Comp(rsf) - do not change in relation to those shown in Figure 4.15,in Figure 4.16 it can
also be seen that:
p The problem of multiplying matrices of 3200×3200elements could be solved almost 35

times faster in the eight computers than in one of them. This is asserted not only by the
computing power of the eight machines processing to their maximum capacity (without
considering communications), Comp(Mf), but also by the algorithm that runs
computation overlapped with communications, OverMsg(Mf).

p With the algorithm that sequentially solves communications with computations, the
problem of multiplying 3200×3200element matrices could be solved almost 25 times
faster in the eight computers than in one of them.

p Both the performance penalization due to the use of swap space in lidipar14 for
3200×3200element matrices and the interconnection network data transferencerate are
combined to have these “superlinear” speedup values.

p Except for one or two machines, memory requirements estimations do not identify
potential problems in terms of the need to use the swap space.

4.6 Actual Performance of Local Networks Using
PVM

The algorithms proposed in the previous Chapter were directly implemented by using the
PVM library (Parallel Virtual Machine) for communication routines among processes. In
each computer, the best sequential code is used for local computing periods. In each local
network (CeTAD, LQT, and LIDI) the same experiments were carried out, i.e.:
p Matrix multiplication with the sequential computation and messages algorithm (SeqMsg).
p Matrix multiplication with the overlapped computing and messages algorithm (OverMsg).
p Size of matrices

� so that, in the machine with greatest computing capacity, the swap spacewill not

99

 lidipar14 +lidipar13 +lidipar12 +lidipar9 +lidipar8 +lidipar7 +lidipar6 +lidipar5

5

10

15

20

25

30

35
Comp(Mf)

Comp(rsf)

OverMsg(Mf)

SeqMsg(Mf)

Mem (1=> ok)

Chapter 4: Experimentation Parallel Computing in Local Area Networks

be used;
� the biggest possible – without the use of swap space.
� In the local network, this corresponds to matrices of order
� n = 2000 and n = 3200, respectively in the local networks of CeTAD and LIDI.
� n = 5000 and n = 9000 respectively in the LQT local network.

4.6.1 CeTAD Local Area Network

Figure 4.17 shows the speedup values obtained in the CeTAD local area network by the
sequential computation and communication algorithm, and by the overlapped computation
with communication algorithm, implemented by means of the PVM message-passing
library, SeqMsg(PVM) and OverMsg(PVM) respectively, for n = 2000,together with those
shown previously in Figure 4.11.

Figure 4.17: Algorithms Speedup with PVM in the CeTAD Network for n = 2000.

It is clear that the results are far from being satisfactory. In fact, the two most disappointing
conclusions are
p None of the running times, i.e. independently of the quantity of computer used, was

better than the sequential execution, with the problem solved in purmamarca.
p As more computers are used, the running time increases instead of decreasing.

Moreover, algorithms’ speedup values that are equal to one - i.e. for the cases in which
purmamarca and cf1, and purmamarca, cf1, and cf2, are used respectively- are not even
real. In both cases, the execution of parallel program processes in cf1 and / or cf2 is
cancelled due to the lack of available memory. In consequence, they appear to be equal to
one because, in fact, the only feasible chance of solution for the matrix multiplication in
this context is the sequential running (using only purmamarca). Even though there exists
an approximation to memory requirements (Mem, in the graphics), it is evident that with
PVM that approximation is not correct.

Even leaving aside the memory problem, the problem of performance is evident. In

100

 purmamarca +cf1 +cf2 +sofia +fourier +Josrap +tilcara +paris +cetad +prited
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
Comp(Mf)
Comp(rsf)

OverMsg(Mf)

SeqMsg(Mf)

Mem(1=> ok)
OverMsg(PVM)

SeqMsg(PVM)

Parallel Computing in Local Area Networks Chapter 4: Experimentation

principle, the alternatives of what caused the low performance obtained could be:
p Low computing performance, when solving each of the intermediate computations. This

problem is basically related to the performance in terms of computation of each
computer.

p Low communications performance, when sending and receiving broadcast messages.
This problem is basically related to PVM and the interconnection network. In this sense,
there are two possibiliti es:

� PVM does not properly implement broadcast messages, or
� communications among user processes from different computers are highly

penalized in terms of performance with respect to the network interconnection
capacity.

Figure 4.18 shows the speedup values obtained in the CeTAD local network by the
sequential computation and communication algorithm, and computation overlapped with
communication algorithm, implemented by means of the PVM message-passing library,
SeqMsg(PVM) and OverMsg(PVM) respectively, for n = 3200,together with those shown
in Figure 4.12.

Figure 4.18: Algorithms Speedup with PVM in the CeTAD Network for n = 3200.

In this case, i.e. taking as reference the computing power of purmamarca to multiply the
square matrices of the order n = 3200:
p Once more, memory requirements in cf1 and cf2 make the parallel program running

possible and processes are cancelled by the operating system.
p In the best of the cases, speedup values close to three are obtained when all the

estimations are higher for the same quantity of machines, including that which takes into
account only the relative speeds: Comp(rsf).

p From the addition of til cara in the parallel machine, the parallel running time gets
worse, reaching –with the ten machines- speedupvalues of approximately 1.33with the
algorithm that carries out overlapped computation and communications, and 1.23 with
the algorithm that carries out sequential computation and communications,
OverMsg(PVM) and SeqMsg(PVM) respectively.

p Algorithms speedup estimations are very far from the values obtained.

101

 purmamarca +cf1 +cf2 +sofia +fourier +Josrap +tilcara +paris +cetad +prited

3

5

8

10

13

15

18

20
Comp(Mf)
Comp(rsf)

OverMsg(Mf)

SeqMsg(Mf)

Mem(1=> ok)
OverMsg(PVM)

SeqMsg(PVM)

Chapter 4: Experimentation Parallel Computing in Local Area Networks

4.6.2 LQT Local Area Network

Figure 4.19shows the speedupvalues obtained in the LQT local network by the sequential
computation and communication algorithm, and by the overlapped computation with
communication algorithm, implemented by means of the PVM message-passing library,
SeqMsg(PVM) and OverMsg(PVM) respectively, for n = 5000,together with those shown
before in Figure 4.13.

Figure 4.19: Algorithms Speedup with PVM in the LQT Network for n = 5000.

Comparing these results with those corresponding to CeTAD (Figure 4.17), the likelihood
is remarkable. Basically, the characteristics of the speedup values obtained are the same:
p Almost no performance is gained by using machines processing in parallel,
p In most of the cases, adding machines to processin parallel implies lossof performance,

even though the computers and the size of the problem are very different form each
other. In consequence, these results confirm that there exists one or more problems and
that the problem/s are not typical of the CeTAD local network nor of the LQT local
network.

Figure 4.20shows the speedupvalues obtained in the LQT local network by the sequential
computation and communication algorithm, and the overlapped computing with
communication algorithm, implemented by means of the PVM message-passing library,
SeqMsg(PVM) and OverMsg(PVM) respectively, for n = 9000,together with those shown
in Figure 4.14. Similarities in terms of speedup values in relation to the CeTAD in a
similar context (Figure 4.18) are, once more, rather evident, despite the differences
between the machines and the size of the problem:
p Memory requirements imposed by the parallel computation with PVM communications

routines make the operating system (when two computers are used, lqt_07 and lqt_06)
cancel one or several processes involved due to the lack of memory. For this reason, the
graphic shows the speedup equal to one for two computers for both algorithms.

p Up to a given quantity of computers, speedup increases. In this case, up to the addition

102

 lqt_07 +lqt_06 +lqt_02 +lqt_01 +lqt_03 +lqt_04

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
Comp(Mf)

Comp(rsf)

OverMsg(Mf)

SeqMsg(Mf)

Mem (1=> ok)

OverMsg(PVM)

SeqMsg(PVM)

Parallel Computing in Local Area Networks Chapter 4: Experimentation

of lqt_02 for the sequential computation and communication algorithm, SeqMsg(PVM)
in the graphic, and up to the addition of lqt_01 for the overlapped communications
algorithm with computation OverMsg(PVM) of the graphic.

p The use of all the machines does not improve the performance in relation to the
sequential solution alternative. The real speedupvalues when the six computers areused
are 1.3 for OverMsg(PVM) and 1.08 for SeqMsg(PVM).

Figure 4.20: Algorithms Speedup with PVM in the LQT Network for n = 9000.

Comparing the results shown in Figure 4.20 with those of Figure 4.19, some differences
can also be found:
p Some of the obtained speedupvalues are rather closer to the estimated, at least for three

or four machines, i.e. when lqt_07, lqt_06, lqt_02, and lqt_07, lqt_06, lqt_02 and
lqt_01 are used respectively.

p The algorithm that carries out computation overlapped with communications has better
performance than that which does not try to make use of any overlay. The difference is
slightly more than 30% when lqt_07, lqt_06, lqt_02, lqt_01 and lqt_03 are used.

4.6.3 LIDI Local Area Network

Figure 4.21shows the speedupvalues obtained in the LIDI local network by the sequential
computation and communication algorithm, and those by the overlapped computation with
communication algorithm, implemented by using the PVM message-passing library,
SeqMsg(PVM) and OverMsg(PVM) respectively, for n = 2000, together with those
previously shown in Figure 4.15. Like in the CeTAD and LQT networks in the
corresponding context (Figure 4.17 and figure 4.19):
p Speedupestimations are rather far-off from the obtained values. From the utili zation of

four computers the difference is even greater.
p In general terms, the addition of computers implies performanceloss; the exceptions are

given for two or threecomputers sinceperformanceincreases in those cases when more
machines are used.

103

 lqt_07 +lqt_06 +lqt_02 +lqt_01 +lqt_03 +lqt_04

1

2

3

4

5

6

7
Comp(Mf)

Comp(rsf)

OverMsg(Mf)

SeqMsg(Mf)

Mem (1=> ok)

OverMsg(PVM)

SeqMsg(PVM)

Chapter 4: Experimentation Parallel Computing in Local Area Networks

Figure 4.21: PVM Algorithms Speedup in the LIDI Network for n = 2000.

Unlike CeTAD and LQT networks:
p The computing time is not worse than that of the sequential solution, despite the

tendency indicates that, as the number of computers used increases, this situation can be
reached (with speedup values less than one).

p The performance loss is, as the number of computers used increases, rather more
gradual.

Figure 4.22shows the speedupvalues obtained in the LIDI local network by the sequential
computation and communication algorithm, and those by the computation overlapped with
communication algorithm, implemented by means of the PVM message-passing library,
SeqMsg(PVM) and OverMsg(PVM) respectively, for n = 3200, together with those
previously shown in figure 4.16.

Figure 4.22: PVM Algorithms Speedup in the LIDI Network for n = 3200.

Even though the values obtained from the experimentation are not close to those estimated

104

 lidipar14 +lidipar13 +lidipar12 +lidipar9 +lidipar8 +lidipar7 +lidipar6 +lidipar5

1

2

3

4

5

6

7

8
Comp(Mf)

Comp(rsf)

OverMsg(Mf)

SeqMsg(Mf)

Mem (1=> ok)

OverMsg(PVM)

SeqMsg(PVM)

 lidipar14 +lidipar13 +lidipar12 +lidipar9 +lidipar8 +lidipar7 +lidipar6 +lidipar5

5

10

15

20

25

30

35
Comp(Mf)

Comp(rsf)

OverMsg(Mf)

SeqMsg(Mf)

Mem (1=> ok)

OverMsg(PVM)

SeqMsg(PVM)

Parallel Computing in Local Area Networks Chapter 4: Experimentation

for the algorithms, it is the first time that higher speedupvalues are obtained in comparison
with at least the speedup values computed according to the relative speeds. According to
Figure 4.22, it can also be said that:
p In the best of the cases, given when lidipar14, lidipar13, lidipar12, lidipar9 and

lidipar8 are used, the matrix multiplication is solved ten times faster than in lidipar14
(it must be bear in mind that lidipar14 uses swap memory in order to solve this
problem).

p From the inclusion of lidipar6, performance decreases with both algorithms, all of
which implies that both OverMsg(PVM) and SeqMsg(PVM) are reduced.

p “Superlinear” speedup values are obtained (greater than the quantity of homogeneous
processors), since the reference time of the problem solved sequentially in lidipar14 is
penalized in terms of performanceby the use of the swap spaceduring computations, a
fact that can be clearly seen in Figure 4.8

The values obtained from the experimentation within the LIDI local network seem to be
quite better than those obtained from the experimentation in the CeTAD and LQT local
networks. Beyondtheparticular differences between the machines – from the point of view
of the parallel computers that are built up with each local network-, the main differences
are:

p The LIDI local network is ten times faster than that of CeTAD and LQT.
p The parallel computer built with the LIDI local network is homogenous, while both

CeTAD and LQT parallel computers are (very) homogenous.
Intuitively, the most important reason for which better results areobtained in theLIDI local
network is the really superior capacity of the interconnection network, even though more
data is apparently needed to render a more justified explanation.

4.7 Execution Profiles in Lo cal Aera Networks wi th
PVM

In order to be more precise about parallel running times and the reasons for which speedup
estimations are so far off from those obtained, the same experimentations were carried out
but with a minimum of instrumentation so that:
p the part of the total running time used for parallel computation and the part used for

communications is clearly identified. This information is very useful for identifying
whether the problem is communications or not;

p the running state of each process (local network computer) is graphically identified
during each running time instant. This type of information is more detailed than the
previous one, and is useful for identifying whether there exists some particular computer
producing ageneral delay. For instance, if for any local reason a computer does not send
a broadcast message in the expected time, the rest of the computers will be affected
since they will not receive it.

Since experimentations are so numerous to show each running time profiles, and what’s
more, they are mostly similar, the present work presents and explains the most significant
in each of the local networks.

105

Chapter 4: Experimentation Parallel Computing in Local Area Networks

4.7.1 CeTAD Local Area Network

Figure 4.23shows the execution profile when using the five best machines of the CeTAD
local network for a parallel matrix multiplication of 2000×2000 elements with the
sequential computation and communications algorithm, where:
p The time appears in seconds.
p At every time instant, each computer can be:

� running a partial computation, shown as “Computation” in the graphic;
� sending or receiving a broadcast message, shown as “Bcasts” in the graphic, and

during which computations cannot be carried out and thus, in order to go on with
the computation, the finalization of the broadcast must be “waited” .

p Bcasts identifies each broadcast message, in which a process run in a computer sends
data to the rest (in this case, to another four processes) that are run in the rest of the
computers (four computers).

p Sincein PVM the delivery of all the messages is overlapped with computations, when a
broadcast is sent simultaneously, a partial computation period of the result matrix is
carried out.

Figure 4.23: SeqMsg(PVM) Profile with Five Machines and n = 2000 in CeTAD.

Beyond some particular details of the running time, it can be clearly noticed that during
most of each computer’s running time, the finalization of a broadcast message is awaited
(more precisely, the reception of a broadcast message from another computer).
Table 4.4shows the summary information of the parallel program running that corresponds
to the running profile of Figure 4.23, where:
p Name identifies the name of the computer used.
p Rows identifies the quantity of rows of the result matrix assigned to each computer,

which is proportional to the relative speed of each computer in relation to the parallel
computer.

p Tot. Comp. identifies the quantity of local running time during which operations with

106

purmamarca

cetadfomec1

cetadfomec2

sofia

fourier

0 10 20 30 40 50 60 70 80 90 100
Tiempo

Esperas Cómputo Bcasts

Parallel Computing in Local Area Networks Chapter 4: Experimentation

floating point numbers have been executed.
p Per It. identifies the quantity of local running time of a computation step (operations

with floating point numbers).
p Tot. Msg. identifies the quantity of local running time using the wait of the broadcast

message finalization (one delivery and four receptions, since there is a total of five
computers).

Name Rows Tot. Comp. Per It. Tot. Msg.

purmamarca 555 15,17 3,03 68,29

cf1 426 15,05 3,01 68,39

cf2 426 15,59 3,12 67,80

sofia 394 17,00 3,40 65,22

fourier 199 15,25 3,05 55,91

Table 4.4 : Summary of SeqMsg(PVM) with Five Machines and n = 2000 in CeTAD.

Figure 4.24shows the running profile when all the machines (ten) available in CeTAD are
used. In addition,and from what the graphic shows, it is clear that most of the running time
is spent in messages.

Figure 4.24: SeqMsg(PVM) Profile with Ten Machines and n = 2000 in CeTAD.

Figure 4.24 also shows quite clearly that both the first broadcast - sent from purmamarca -
and the sixth - sent from Josrap - use more transmission time than the rest. But even if
these two messages use the average communication time used by the rest, the total
communication time is still dominated by communications. In consequence, the first
problem to be solved according to these two running profiles just described (Figure 4.23
and Figure 4.24) is the excessive communication time.

Table 4.5shows thesummary information of the parallel program running that corresponds

107

purmamarca
cetadfomec1
cetadfomec2

sofia
fourier
Josrap
tilcara

paris
cetad
prited

0 50 100 150 200 250 300
Tiempo

Esperas Cómputo Bcasts

Chapter 4: Experimentation Parallel Computing in Local Area Networks

to the running profile of Figure 4.24,where the relative weight of communications can be
quantified more clearly in relation to the computation (Tot. Comp.)

Name Rows Tot. Comp. Per It. Tot. Msg.

purmamarca 454 12,35 1,24 255,78

cf1 349 12,44 1,24 255,75

cf2 349 12,48 1,25 255,31

sofia 324 12,21 1,22 255,05

fourier 164 12,85 1,28 255,22

Josrap 142 12,24 1,22 256,03

tilcara 104 13,29 1,33 254,94

paris 48 12,08 1,21 255,01

cetad 38 12,84 1,28 254,16

prited 28 13,68 1,37 236,92

Table 4.5: Summary of SeqMsg(PVM) with Ten Machines and n = 2000 in CeTAD.

The situation does not vary much when the communications algorithm overlapped with
computation is used, as Figure 4.25 shows.

Figure 4.25: OverMsg(PVM) Profile with Five Machines and n = 2000 in CeTAD.

In brief, Figure 4.25shows the running profile when using the CeTAD local network’s five
best machines for a parallel matrix multiplication of 2000×2000 elements with the
overlapping computation and communications algorithm. Also in this case, during most of
the running time of each computer, the finalization of a broadcast message (more precisely,
the reception of a broadcast message from another computer) is expected. The total running
time of OverMsg(PVM) is less than that of SeqMsg(PVM), due to the overlapping that
partially masks the weight of the communication time. The running summary shown in

108

purmamarca

cetadfomec1

cetadfomec2

sofia

fourier

0 10 20 30 40 50 60 70 80
Tiempo

Esperas Cómputo Bcasts

Parallel Computing in Local Area Networks Chapter 4: Experimentation

Table 4.6 is similar to that shown in Table 4.4, even though the communication times are
inferior, since part of the time of each broadcast message is overlapped with local
computation.

Name Rows Tot. Comp. Per It. Tot. Msg.

purmamarca 555 15,20 3,04 55,97

cf1 426 17,07 3,41 53,54

cf2 426 17,31 3,46 49,44

sofia 394 16,50 3,30 53,78

fourier 199 16,18 3,24 44,97

Table 4.6: Summary of OverMsg(PVM) with Five Machines and n = 2000 in CeTAD.

When the maximum size that can be solved in the computer with highest computing
capacity within CeTAD –i.e. n = 3200- is taken as reference, the characteristics in terms of
running and performance profiles are still the same. Figure 4.26 shows the execution
profile when using the seven best machines of the CeTAD local network for a parallel
matrix multiplication of 3200× 3200, with the overlapping computation and
communications algorithm.

Figure 4.26: OverMsg(PVM) Profile with Seven Machines and n = 3200 in CeTAD.

Table 4.7 completes the information of Figure 4.26 with the summary of the execution,
showing, in each computer:
p the quantities of assigned rows (Rows).
p the total computing and communication times (Tot. Comp. and Msg. Tot.).
p the time dedicated to local computation in each iteration (Per. It.).

109

purmamarca

cetadfomec1

cetadfomec2

sofia

fourier

Josrap

tilcara

0 50 100 150 200 250 300 350 400 450
Tiempo

Esperas Cómputo Bcasts

Chapter 4: Experimentation Parallel Computing in Local Area Networks

Name Rows Tot. Comp. Per It. Tot. Msg.

purmamarca 771 53,36 7,62 365,40

cf1 593 88,55 12,65 330,97

cf2 593 89,01 12,72 330,66

sofia 549 53,26 7,61 365,44

fourier 276 62,05 8,86 356,99

Josrap 242 51,96 7,42 367,13

tilcara 176 65,33 9,33 316,02

Table 4.7: Summary of OverMsg(PVM) with Seven Machines and n = 3200 in CeTAD.

Figure 4.27 and Table 4.8 show all that is related to a 3200×3200-element matrix
multiplication in parallel, with the overlapped computation and communications using the
ten machines available in CeTAD.

Figure 4.27: OverMsg(PVM) Profile with Ten Machines and n = 3200 in CeTAD.

It is really interesting to compare the details in terms of computing time (Tot.Comp.) and
communication time (Msg. Tot) shown in Table 4.7 and Table 4.8. The total time
computing average in each computer is of approximately 66.22seconds when the seven
computers with highest computing capacity of the CeTAD are used. When all the
computers are used, this average is of approximately 53.5seconds. In principle, it should
not happen the same with communications because, in all the cases, all the data of matrix B
must be transferred among the computers (via broadcast messages) and, thus, the
communication timeshould bekept moreor lessinvariant. This is based on theassumption
that each broadcast message implementation among processes takes the utmost advantage
of the Ethernet network broadcast capacity, in which there should be at least a minimum
increase of time due to the highest quantity of receiving processes of each of the messages

110

purmamarca
cetadfomec1
cetadfomec2

sofia
fourier
Josrap
tilcara

paris
cetad
prited

0 100 200 300 400 500 600 700 800
Tiempo

Esperas Cómputo Bcasts

Parallel Computing in Local Area Networks Chapter 4: Experimentation

to be carried out. However, the total communication time average when the seven best
computers of CeTAD areused is of 347.52seconds, andwhen all thecomputers areused is
of 676.14 seconds, i.e. almost twice the time necessary to transfer the same data.

Name Rows Tot. Comp. Per It. Tot. Msg.

purmamarca 726 49,16 4,92 685,10

cf1 559 63,12 6,31 671,01

cf2 559 63,72 6,37 670,37

sofia 518 48,72 4,87 683,82

fourier 261 50,20 5,02 684,24

Josrap 228 48,08 4,81 686,53

tilcara 166 52,02 5,20 682,36

paris 77 50,20 5,02 682,36

cetad 61 52,03 5,20 680,20

prited 45 57,78 5,78 635,42

Table 4.8: Summary of OverMsg(PVM) with Ten Machines and n = 3200 in CeTAD.

Since the performance problem is given by communications, it is convenient to keep on
analyzing in more detail the communication times, and in this sense, the summaries of the
parallel runnings can offer more information. As previously mentioned, for a given size of
matrices, the quantity of data to be communicated between computers is the same and
independent of the quantity of computers used in parallel. From the point of view of the
messages, the data of matrix B (C=A×B) should always be transferred among all
computers.

According to Table 4.4, each computer spends an average of 65.12 seconds to
communicate data of matrix B with the non-overlapped computation and communication
algorithm in five computers. According Table 4.5, when the ten computers are used (the
same algorithm and the same matrix sizes), the average time of is 253.42seconds. Even
though the absolute values are completely different, the general situation does not seem to
change much with the algorithm designed to overlap communications with local
computation and for matrices of order n = 3200. According to Table 4.7, the
communication average time is of 347.52seconds when seven computers are used, and
according to Table 4.8, the total communications time is of 676.14 seconds when ten
computers are used.

Table 4.9 shows a summary of what happens with communications in terms of
performance given in MB/s (220 bytes per second) with the data of the previously
mentioned tables, where
p n is the order of the matrices to be multiplied (an the order of matrix B transferred

among machines)
p Comp. Number is the number of computers used in parallel and in which the code to

obtain communication times, among many, was instrumented.

111

Chapter 4: Experimentation Parallel Computing in Local Area Networks

p Algorithm indicates the parallel algorithm used.
p Time is the average local time used for communications.
p MB/s indicates the performance of the interconnection network in Megabytes (220

bytes) per second, computed according to matrix B’s transference time (the only to be
transferred among computers).

n Comp. Number Algorithm Time MB/s

2000 5 SeqMsg 65.12 0.23

2000 10 SeqMsg 253.42 0.06

3200 7 OverMsg 347.52 0.04

3200 10 OverMsg 676.14 0.02

Table 4.9: Communications Performance in CeTAD.

The two most important conclusions as regards communications’ performance using the
data of Table 4.9 are that
1. In general, it is really low, since, in the best of the cases, less than the 25% of the

maximum theoretical capacity of the interconnection network is used.
2. For a given data quantity to be transferred, the higher the number of computers used the

lower the performance.

4.7.2 LQT Local Area Network

Both each algorithm running profiles and the summaries of the computing and messages
running times are really similar to those shown in the CeTAD. It is clear that they do not
coincide in absolute terms due to the differences as regards computers and matrix sizes
used to carry out the processing. What is significantly similar is the “behavior” in terms of
performanceof the various parallel machines, and their consequent conclusion in terms of
the problem to be solved: that of communications.

Figure 4.28 shows the running profiles that correspond to the best parallel time used to
solve a 5000x5000 element matrix multiplication. This is obtained with the overlapped
computationand communicationalgorithm using threecomputers. It is interesting to notice
two relevant aspects from the running profile of Figure 4.28:
p Communications overlay with local computation is used quite effectively. More

specifically, computers that receive broadcast messages sent from lqt_06 and lqt_02
wait for these data a littl e more than what is expected.

p Almost all the communication time affecting the total running time is that of the first
broadcast, for which machines have to wait in the first place, i.e. that sent from lqt_07
and received in lqt_06 and lqt_02.

112

Parallel Computing in Local Area Networks Chapter 4: Experimentation

Figure 4.28: OverMsg(PVM) Profile with Three Machines and n = 5000 in LQT.

Table 4.10 shows the summary of the parallel running corresponding to the profile of
Figure 4.28.

Name Rows Tot. Comp. Per It. Tot. Msg.

lqt_07 1808 148,87 49,62 90,60

lqt_06 1807 149,06 49,69 90,34

lqt_02 1385 175,20 58,40 70,66

Table 4.10: OverMsg(PVM) Summary with Three Machines and n = 5000 in LQT.

As already explained with the speedupvalues obtained by the algorithms, performancegets
worse when more machines of the LQT local network are used. This can be clearly seen in
Figure 4.29, which shows the running profile of a 5000x5000 element matrix
multiplication using the overlapped communications and computing algorithm and all the
available computers of LQT.

Figure 4.29evidently shows that there is a computer in particular that behaves differently
from the rest, or at least that the broadcast message sent from lqt_01 uses a transmission
time significantly higher than the rest.

Oncemore, as when the same situation was identified in the CeTAD local network (Figure
4.21), it must be said that, even if this broadcast used the average communication time used
by the rest, the total communication time would still be dominated by the sum of the times
used for communications.

113

lqt_07

lqt_06

lqt_02

0 50 100 150 200 250
Tiempo

Esperas Cómputo Bcasts

Chapter 4: Experimentation Parallel Computing in Local Area Networks

Figure 4.29: OverMsg(PVM) Profile with Six Computers and n = 5000 en el LQT.

Table 4.11 shows the summary of the 5000x5000elements matrix multiplication running
using the overlapped communications and computing algorithm and all the computers
available in LQT in relation to Figure 4.29.As previously identified with the computers of
CeTAD, the communication time is what changes significantly in terms of performance.
This behavior is verified in LQT, comparing the column that shows the times used for
communications in each machine (Tot. Msg.) of Table 4.10and that of Table 4.11.When
more machines are used, the transmission of the same quantity of data (B matrix’s
elements) among computers takes much more time.

Name Rows Tot. Comp. Per It. Tot. Msg.

lqt_07 1089 89,21 14,87 657,71

lqt_06 1089 89,15 14,86 657,57

lqt_02 835 109,13 18,19 637,87

lqt_01 811 174,52 29,09 572,56

lqt_03 589 92,79 15,47 654,50

lqt_04 587 102,52 17,09 592,84

Table 4.11: Summary of OverMsg(PVM) with Six Machines and n = 5000 in LQT.

In the case of the matrices of order n = 9000, the situation in terms of performance is
similar. Figure 4.30hows the running profile corresponding to the best parallel time used to
solve a 9000x9000 element matrix multiplication. This time is obtained with the
overlapped computing and communication algorithm using the four computers with highest
computing capacity.

114

lqt_07

lqt_06

lqt_02

lqt_01

lqt_03

lqt_04

0 100 200 300 400 500 600 700 800
Tiempo

Esperas Cómputo Bcasts

Parallel Computing in Local Area Networks Chapter 4: Experimentation

Figure 4.30: Profile of OverMsg(PVM) with Four Computers and n = 9000 in LQT.

Oncemore, as more machines are used to solve the same problem (a matrix multiplication
of 9000x9000elements), with the same algorithm (that solves overlapped communications
with local computation), the performance worsens and the total running time is greater.
Figure 4.31shows the running profile to solve a 9000x9000element matrix multiplication
in parallel using all the available computers of LQT and the overlapped computing and
communicationalgorithm. In this case, the summaries of the executionare not shown, even
though they arenothing but the confirmationof the apparent conclusions made from Figure
4.29 and Figure 4.30: the loss of time is due to the excessive communication time when
more computers are used.

Figure 4.31: Profile of OverMsg(PVM) with Six Computers and n = 9000 in LQT.

Specifically as regards communications performance, when analyzing the running time

115

lqt_07

lqt_06

lqt_02

lqt_01

0 200 400 600 800 1000 1200 1400
Tiempo

Esperas Cómputo Bcasts

lqt_07

lqt_06

lqt_02

lqt_01

lqt_03

lqt_04

0 500 1000 1500 2000 2500 3000 3500
Tiempo

Esperas Cómputo Bcasts

Chapter 4: Experimentation Parallel Computing in Local Area Networks

values for matrices of order n = 5000(shown in Table 4.10and Table 4.11), and of order
n=9000 (not specifically shown), it occurs the same as in the CeTAD local network:
1. It is generally very low.
2. For a data quantity to be transferred, the higher the number of computers, the lower the

performance. The time necessary to carry out a broadcast increases linearly with the
number of computers involved.

4.7.3 LIDI Local Area Network

In the LIDI Local Network the previous results are confirmed, though with a difference
given by the best performanceof the interconnectionnetwork – ten times better than that of
the CeTAD and LQT local networks. In this sense, the running profiles (and the summaries
of computing and communication times) show that:
p Unlike the CeTAD and LQT local networks, the communication time has not such an

important weight in the total time of the parallel programs.
p Like in the CeTAD and LQT local networks, the communication time increases notably

as more computers are used to solve a same problem.

As an example, Figure 4.32 shows the execution profile of the parallel program with
sequential computation and communications using four computers to solve a multiplication
of matrices of order n = 2000.

Figure 4.32: Profile of SeqMsg(PVM) with Four Computers and n = 2000 in LIDI.

In addition,Table 4.12shows the summary of the parallel program running with sequential
computation and communications using four computers to solve a multiplication of
matrices of order n = 2000.

116

lidipar14

lidipar13

lidipar12

lidipar9

0 2 4 6 8 10 12 14
Tiempo

Esperas Cómputo Bcasts

Parallel Computing in Local Area Networks Chapter 4: Experimentation

Name Rows Tot. Comp. Per It. Tot. Msg.

lidipar14 500 7.25 1.81 6.30

lidipar13 500 7.29 1.82 6.16

lidipar12 500 7.26 1.81 6.31

lidipar9 500 7.24 1.81 5.24

Table 4.12: Summary of SeqMsg(PVM) with Four Machines and n = 2000 in LIDI.

Figure 4.33 and Table 4.13 show the profile and the summary of the parallel program
running with sequential computation and communications using all the computers to solve
a multiplication of matrices of order n = 2000.

Figure 4.33: Profile of SeqMsg(PVM) with Eight Computers and n = 2000 in LIDI.

Name Rows Tot. Comp. Per It. Tot. Msg.

lidipar14 250 3.78 0.47 13.49

lidipar13 250 3.75 0.47 13.52

lidipar12 250 3.73 0.47 13.54

lidipar9 250 3.74 0.47 13.54

lidipar8 250 3.73 0.47 13.55

lidipar7 250 3.74 0.47 13.54

lidipar6 250 3.72 0.46 13.56

lidipar5 250 3.73 0.47 12.08

Table 4.13: Summary of SeqMsg(PVM) with Eight Machines and n = 2000 in LIDI.

117

lidipar14

lidipar13

lidipar12

lidipar9

lidipar8

lidipar7

lidipar6

lidipar5

0 2 4 6 8 10 12 14 16 18
Tiempo

Esperas Cómputo Bcasts

Chapter 4: Experimentation Parallel Computing in Local Area Networks

From the values shown in Table 4.12,it is clear that each computer uses slightly more time
in local computation than in communications. The situation changes when eight computers
are used, such as Table 4.13 shows, since each computer uses for communications an
average more than three times the time used for local computation.

It is interesting to noticewhat happens when a multiplication of matrices of order n= 3200
is solved. Figure 4.34and Figure 4.35show the execution profiles of the parallel program
with sequential computation and communications that solve a matrix multiplication of
order n= 3200using four and eight computers, respectively. It is evident that the running
time with four computers is rather greater than the running time with eight computers,
though this does not assure on its own the performance acceptabilit y.

Figure 4.34: Profile of SeqMsg(PVM) with Four Computers and n = 3200 in LIDI.

Figure 4.35: Profile of SeqMsg(PVM) with Eight Computers and n = 3200 in LIDI.

118

lidipar14

lidipar13

lidipar12

lidipar9

0 10 20 30 40 50 60 70 80 90 100
Tiempo

Esperas Cómputo Bcasts

lidipar14

lidipar13

lidipar12

lidipar9

lidipar8

lidipar7

lidipar6

lidipar5

0 5 10 15 20 25 30 35 40 45 50 55
Tiempo

Esperas Cómputo Bcasts

Parallel Computing in Local Area Networks Chapter 4: Experimentation

Table 4.14 shows the summary of the running times corresponding with the profile of
Figure 4.34,and Table 4.15shows the summary of the running times corresponding to the
profile of Figure 4.35.

Name Rows Tot. Comp. Per It. Tot. Msg.

lidipar14 800 30,20 7,55 55,40

lidipar13 800 43,00 10,75 42,79

lidipar12 800 43,24 10,81 49,37

lidipar9 800 38,20 9,55 44,69

Table 4.14: Summary of SeqMsg(PVM) with Four Machines and n = 3200 in LIDI.

Name Rows Tot. Comp. Per It. Tot. Msg.

lidipar14 400 14,97 1,87 35,13

lidipar13 400 14,98 1,87 35,12

lidipar12 400 14,97 1,87 35,13

lidipar9 400 14,94 1,87 35,17

lidipar8 400 14,95 1,87 35,16

lidipar7 400 14,98 1,87 35,14

lidipar6 400 14,89 1,86 35,22

lidipar5 400 15,01 1,88 31,47

Table 4.15: Summary of SeqMsg(PVM) with Eight Machines and n = 3200 in LIDI.

In addition, as shown in Figure 4.34, there are computing periods that are substantially
greater than others. More specifically, in computers lidipar13, lidipar12, and lidipar9, the
computing period after the broadcast message’s delivery is greater than all the remaining
local computing periods. Due to the very definition of the algorithm, in all the computing
periods the same task is carried out, and thus the computing time should be the same.

One of the main reasons for a computer to have a lesser performance (assuming that the
sameprecise task is carried out, as in this case) is the useof thepreviously mentioned swap
memory. Consequently, the most acceptable explanation is entirely related to the memory.
SincePVM is used in order to carry out a broadcast message, each communication routine
has its own overhead (aggregate memory requirement), basically for the storage of
messages in buffers (intermediate memory), which PVM, in turn, transfers among
machines. In general, it can be accepted that the quantity of extra memory in this sense is,
at the very least, equal to the data quantity transferred. This memory overhead reduces the
available main memory and, thus, the swap memory spaceis used. In fact, this creates a
reduction of the performance of
p Computation, since part of the data to be processed might be assigned in swap memory.

119

Chapter 4: Experimentation Parallel Computing in Local Area Networks

p Communications, since part of the data to be transferred might be assigned in swap
memory.

And, for this reason, the computing periods posterior to a broadcast are “slower” than the
rest.

Unlike what has happened in CeTAD and LQT Local Networks, the total average
communication time is quite higher for four machines than for eight, all of which can be
proved with the data of Table 4.14 and Table 4.15, respectively.

The execution profile and summary for the same problem but with six machines (Figure
4.36 and Table 4.16) demonstrate that the performance problem is related to that of
memory because
p All the computing periods in all the computers use approximately the same running

time.
p The total communication time is lesser than for four and eight computers.

Figure 4.36: Profile of SeqMsg(PVM) with Six Computers and n = 3200 in LIDI.

Name Rows Tot. Comp. Per It. Tot. Msg.

lidipar14 534 19,99 3,33 25,53

lidipar13 534 19,98 3,33 25,53

lidipar12 533 20,75 3,46 24,89

lidipar9 533 20,73 3,46 24,91

lidipar8 533 20,75 3,46 24,90

lidipar7 533 20,77 3,46 21,68

Table 4.16: Summary of SeqMsg(PVM) with Six Machines and n = 3200 in LIDI.

120

lidipar14

lidipar13

lidipar12

lidipar9

lidipar8

lidipar7

0 5 10 15 20 25 30 35 40 45 50
Tiempo

Esperas Cómputo Bcasts

Parallel Computing in Local Area Networks Chapter 4: Experimentation

4.8 Real Performance of Local Networks using
“ UDP”

Since the performanceproblem is created almost exclusively by communications, specific
tests were carried out in order to evaluate the performanceof broadcast and point-to-point
messages using the PVM library. Though the results appear in detail in Appendix C, the
main conclusions are:
p Theways of sending asame message to more than one target processwhen each process

is assigned to a different machine are implemented with multiple point-to-point
messages. Both

� the multicast operation , pvm_mcast(), and
� the broadcast operation in a group, pvm_bcast(),

imply that, at least, the same message is sent m times from the origin computer (where
the processsending the message is running) towards the m machines where there is at
least one target process of the message. If, for instance, a broadcast or multicast message
has five receptors and each of these receptor processes is being run in a different
machine (and different from the machine in which the processthat sends the message is
being run), the total timeof the messagewill beapproximately five times the timeof the
same message if it is sent to another process run in another machine.

p Messages latency time depends on their origin and target computers. However, for
larger messages, the latency time is not relevant in relation to the data transferencetime
and, thus, the total message time is independent of the machines that communicate
among themselves.

The proposed broadcast communication routine is oriented to the utili zation of the physical
characteristics (specifically broadcast) of the Ethernet networks which the communication
library (PVM) does not use. The direct consequence is that the broadcast communication
timewith PVM will bemuch higher than the expected and, thus, the results arenot so good
in terms of total performance. In this sense, there exist several alternatives, being the
following the two most important:
1. To use another message passing library, such as some MPI implementation (usually

suggested for this type of parallel architectures).
2. To implement a broadcast message routine (and, eventually, a whole collective

communication library) to explicitl y use the Ethernet networks’ broadcast capacity.

A priori, the use of another message passing library has a fundamental drawback from the
point of view of the performance, or from that of “prediction” of broadcast messages’ good
performance. In the specific case of MPI, it is clear that the performance is independent of
the implementation.More specifically, the implementation would be that which determines
the degreeof utili zation of the Ethernet networks’ characteristics for broadcast messages.
In this sense, MPI and particularly all its implementations share a certain degree of
uncertainty in relation to the broadcast message performancewith the rest of the message
passing libraries, including PVM. In this case, the difference are the specific
experimentations carried out, which have determined the broadcast (and multicast)
message performancecharacteristics for PVM, and not for the remaining libraries. In fact,
it is quite diff icult for message passing libraries to be to optimized with the characteristics
of the Ethernet networks since:

121

Chapter 4: Experimentation Parallel Computing in Local Area Networks

p In general, libraries are proposed, one way or the other, as standards for message passing
parallel machines and, thus, there is no sense in orienting them towards a specific type
of interconnection networks. In fact, both PVM and MPI have been implemented for
different types of parallel machines and, thus, there is no sense in orienting them a
priori to Ethernet interconnection networks.

p In general, libraries provide a large quantity of communication routines. Even though
we can assert that for point-to-point process communications the primitive send –
receive are theoretically enough, it is also true that there exists a great variety of
communication routines that are considered useful and even necessary in some cases.
Perhaps, the most clear example in this respect is the very definition of the MPI
standard. In this context, it is very diff icult to orient or optimize one or one type of
communication routine for one or one type of interconnection network without
producing a library excessively costly (in terms of development, maintenance, etc.)
and/or too specific.

For these reasons, a broadcast message routine among user processes was chosen to be
implemented with a set of design and implementation premises, so that:
p It makes use of the very broadcast of Ethernet networks, and in this way can be

optimized in terms of performance. Since the algorithm depends exclusively on
broadcast messages, making use of the Ethernet networks’ broadcast automatically
creates a good expectation in terms of scalabilit y because the communication time is
expected to be kept and not increased proportionally to the number of computers used.

p It is simple enough so as to not impose a too heavy load in terms of implementation and
maintenance. In addition, it is clear that the simplicity per se largely contributes to the
optimal performance. On the other hand, the proposal is specific enough to make the
implementation simple.

p With the maximum possible portabilit y, it could be used –if possible- even in the
context of interconnection networks that are not Ethernet.

p It can be implemented and installed from the user mode, without changing the operating
system (kernel) and without the necessity to obtain special li censes (superuser). It is
common to obtain the best results in terms of performance adapting the kernel and/or
with the possibilit y of handling the processes priorities, such as in [31] [25] [GAMMA].
These possibiliti es are discarded since:

� In general, free-use libraries do not employ these characteristics and, thus, it
would be like changing the parallel software development context. Basically, a
user that has always used PVM has never had, nor has, any reason for obtaining
special priorities nor even changing the very operating system.

� The original proposal is directed to installed computers networks and, thus, each
computer does not necessarily consider parallel computing as single and/or main
objective. In fact, different administrators can be used in parallel for each of the
computers and this produces, at least, a multiple administration work that in
general is not easy to solve.

p It could eventually extended to awholecollective communications library, such as those
proposed in [15] [14] [16], though oriented specifically to Ethernet interconnected
networks.

Most (if not all) the previous premises are fulfill ed when the complete broadcast routine
design and implementation is based on the UDP standard protocol (User Datagram

122

Parallel Computing in Local Area Networks Chapter 4: Experimentation

Protocol) [95] over IP (Internet Protocol) [96] since:
p UDP allows to send a same datum or set (package) of data to multiple targets at a user’s

applications level.
p Such as proved in all the machines used, the implementation of the UDP protocol takes

direct advantage of the Ethernet networks broadcast capacity.
p In principle, it seems reasonable that the broadcast directly implemented as a part of the

UDP protocol has a better performancethan that implemented by a user. If, for instance,
there exists the possibilit y of using UDP in an ATM network, it is very likely that UDP
broadcast will be better (in terms of performance) than the potentially implemented by
user processes. Even though the performance is not taken into account, whenever there
exists a UDP protocol implementation, the proposed broadcast will be capable of being
employed, independently of whether the interconnection network is Ethernet or not [93].

p The user’s interfaceprovided by the sockets is simple enough and highly extended to all
the versions of UNIX, so as to simpli fy the broadcast routine implementation, even
when problems related to process synchronization (in a same or different computers)
and communications reliabilit y are to be solved.

p UDP, TCP and IP protocols are easily usable from user processes, at least in the
standard computers of the installed local networks.

To summarize, there exists a new broadcast message routine based on UDP and portable to
at least all the UNIX versions used in all the local networks over which the
experimentation is carried out. With this new broadcast message routine the same
experiments are carried out again and the results appear in the next subsections.

The results of the experimentation show several characteristics not previously found.The
appearance of most of these characteristics is given by:
p The markedly superior performanceof the broadcast based on UDP in relation to that of

the PVM library. This makes the communication time comparable (at least in the same
order of magnitude) to that of computation, and thus each computer’s computing
performance is important given its weight in the total running time. Up to the present
moment, the communication time has been so high that all or most of the parallel
running time is basically given by communications.

p Computers’ heterogeneity, which in itself contributes with an important innovation
degree to what is generally shown with respect to parallel machines performance.

Since now heterogeneity -and, more specifically, the differences in computers’ computing
performance - becomes relevant, most of the new characteristics appear in the CeTAD
local network because it is the most heterogeneous of the three over which the
experimentation has been out.

In general, some of the characteristics that appear in the CeTAD local network can also be
found in the LQT and LIDI local networks or they just do not appear. At the most, the
influenceof the computing requirements is enhanced in the case of the LQT local network,
when the problems to be solved are (or could be) bigger due to the higher quantity of
availablememory. For this reason, theexperimentation results in theCeTAD local network
will be explained with the highest, possible degreeof detail; and, in the case of the other
two local networks, the differences in terms of “behavior” will only be dealt with always
from the performance point of view.

123

Chapter 4: Experimentation Parallel Computing in Local Area Networks

4.8.1 CeTAD Local Area Network

With the aim of presenting and discriminating even better the results of the
experimentation in the CeTAD local network, the whole analysis of the data obtained is
divided in two subsections that follow the size of the problem. The first section is
dedicated to the speedup results taking as reference the running time of the matrix
multiplication of order n = 2000.Then, the speedupresults taking as referencethe running
time of the matrix multiplication of order n = 3200 are subsequently analyzed.

4.8.1.1 Matrices of 2000××2000 Elements

Figure 4.37 shows the speedup values obtained in the CeTAD local network by the
algorithms implemented using UDP, SeqMsg(UDP) and OverMsg(UDP) for matrices of
order n = 2000 together with those previously shown in Figure 4.17.

Figure 4.37: Algorithms Speedup with UDP in the CeTAD Local Network for n = 2000.

As it can be seen in Figure 4.37, the performance of the algorithms SeqMsg(UDP) and
OverMsg(UDP) –the only added in relation to those shown in Figure 4.17– varies
depending on the number of computers used. This variation of the algorithms does not
seem, a priori, to be related. Initially, the algorithm’s results with the sequential
computation and communication periods, SeqMsg(UDP), will be analyzed in detail from
three points of view:
p The relation of the obtained performance results with those obtained using the PVM

communication library.
p The algorithm’s capabilit y of using to the utmost the machines computing capacity, in

the computing periods.
p The algorithm’s capabilit y of using to the utmost the communication network capacity,

in the communication period.

124

 purmamarca +cf1 +cf2 +sofia +fourier +Josrap +tilcara +paris +cetad +prited
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
Comp(Mf)
Comp(rsf)

OverMsg(Mf)

SeqMsg(Mf)

Mem(1=> ok)
OverMsg(PVM)

SeqMsg(PVM)

OverMsg(UDP)
SeqMsg(UDP)

Parallel Computing in Local Area Networks Chapter 4: Experimentation

Then, the same kind of analysis of the result (in general, always from the performance
point of view) will be carried out with the algorithm oriented to the use of the capacity of
overlapping computation with communications, OverMsg(UDP).

SeqMsg(UDP). The algorithm that carries out the computing and communication periods
sequentially, SeqMsg(UDP), is not far off the estimation of the corresponding maximum
speedup, SeqMsg(Mf), at least until the ten available machines are used.

Table 4.17 shows the running summary when six machines are used to multiply 2000x2000
element matrices with this algorithm. Comparing the values appearing in Table 4.17with
those shown in Table 4.4 – in which the only difference is that the broadcast routine
provided by PVM is used -, it can be noticed that:
p In terms of local computing time, they are very similar; when PVM is used, the total

average is of 15.61seconds, and with the routine directly based on UDP, the average is
of 14.31 seconds.

p Communication times are completely different; when PVM is used, the total average is
of 65.12seconds, and with the routine directly based on UDP, the average is of 15.69
seconds, slightly more than four times lesser.

Name Rows Tot. Comp. Per It. Tot. Msg.

purmamarca 555 14,15 2,83 15,89

cf1 426 14,14 2,83 15,86

cf2 426 14,09 2,82 15,91

sofia 394 14,40 2,88 15,71

fourier 199 14,78 2,96 15,08

Table 4.17: Summary of SeqMsg(UDP) with Five Machines and n = 2000 in CeTAD.

The difference in communication times is evidently given by the way PVM solves the
broadcast messages: multiple point-to-point messages among the involved computers. But
beyondthe comparison with the implementation based on PVM, it is necessary to prove if
each computer is used to the maximum of its capacity, and if the interconnection network
is used with optimum performance. This analysis will be carried out for the case in which
ten computers are used, since the performance decreases and the reasons for this
performance degradation can be more clearly seen.

Table 4.18 shows the running summary when all the machines (ten) are used to multiply
matrices of 2000x2000elements with the algorithm that carries out sequential computation
and communication, SeqMsg(UDP). Comparing the values of Table 4.18with those of the
previous table, it can be noticed that:
p In terms of computing, there are not so many changes since the five added computers

have, in fact, really low computing capacity in relation to the total of the remaining. The
total processing quantity of the computers is directly proportional to the quantity of
assigned rows, which in turn is given by each computer’s relative speed, and the first
five machines are in charge of the 82% of the total.

p The communication time has increased from 15.69seconds with five machines to 21.2

125

Chapter 4: Experimentation Parallel Computing in Local Area Networks

seconds with ten machines, representing a penalization in the communications
performanceof more than 35%. Evidently, a 35% of degradation in the communications
performanceis much better than the 500% implied when using PVM, though, anyway, it
seems rather elevated. Without being too specific with respect to what happens with
broadcast messages in performance terms, it can be said that:

� As more processes are involved in collective communications and, in particular,
in broadcast messages, a higher penalization in performance terms is expected.
When all the processes are run in different computers, and the computers are
interconnected with an Ethernet network of 10 Mb/s, the degradation will still be
even greater.

� The computers that are added are relatively much slower than the remaining.
Even when the transferencecapacity of the network interfacecards is of 10 Mb/s
independently of the computers in which they are installed, it has been proved
that, at least experimentally, messages latency time depends on the machines
computing capacity. As the number of computers increases, the size of messages
decreases and, thus, the relative importance of the latency time in each
message’s total time increases as well .

p And these factors (more machine and higher communication latency times) are
combined so as to reach slightly more than 35% of the communication performance
penalization.

Name Rows Tot. Comp. Per It. Tot. Msg.

purmamarca 454 11,81 1,18 21,63

cf1 349 11,84 1,18 21,58

cf2 349 11,82 1,18 21,60

sofia 324 11,97 1,20 21,48

fourier 164 12,67 1,27 20,72

Josrap 142 12,10 1,21 21,43

tilcara 104 12,08 1,21 21,27

paris 48 11,59 1,16 21,53

cetad 38 11,98 1,20 21,03

prited 28 12,65 1,27 19,75

Table 4.18: Summary of SeqMsg(UDP) with Ten Machines and n = 2000 in CeTAD.

At this point, the performance of this interconnection network can be analyzed for
broadcast messages when five and ten machines are used. It should be reminded that, in all
the cases, the total quantity of data to be delivered is given by the quantity of matrix B’s
elements (C = A×B). In the case of matrices of order n = 2000 with simple precision
floating point numbers, the quantity given in bytes is exactly 4x20002. From the
performance point view, then:
p When the five computers with highest computing capacity of the CeTAD are used, the

total communication time in each machine is, in average, 15.69seconds. This represents
a real bandwidth among processes of slightly more than 8Mb/s. Consequently, there

126

Parallel Computing in Local Area Networks Chapter 4: Experimentation

exists lessthan 20% of penalization in relation to the absolute hardware’s maximum in
the communication of broadcast messages among processes.

p When all the computers of CeTAD are used, the total communication time in each
machine is 21.2seconds in average. This represents a real bandwidth between processes
of slightly more than 6 Mb/s. Thus, there exits a penalization of 40 % less than the
maximum hardware absolute in broadcast messages’ communication among processes.

Messages time metrics has hitherto been simpli fied by assuming that the time dedicated to
data transference among computers is equal to the waiting time in communicating data in
each computer. However, it is necessary to remember that the each computer’s algorithm
communication time is in fact the time to be waited until a broadcast message is
completed. This means that all processing load unbalance makes some computers wait
more or less time for the data. For instance, Table 4.18 shows that computers with more
time dedicated to computation - four ier and pr ited - have less communication times
because, in fact, part of the communication time counted on the rest of the computers is
this “extra” computing time used by computers to process matrix data. Since load
unbalance in terms of computing time does not reach the 10% of this time, it is not
discriminated (at least, for the moment) as different from the communication time.

Apart from considering the communication performance, it is evident that the assessment
of two aspects influencing parallel performance can also be considered: computing
performance of each machine in particular, and the real load balance of the parallel
machine.

Local-sequential computing performance of SeqMsg(UDP). From the point of view of
each machine’s computing performance, we should analyze how much penalization is
imposed in relation to the maximum processing capacity due to the use of computers in
parallel. In this sense, the most important factor to be identified or quantized might be the
communication “ interference” over each computer sequential computing performance. In
other words, from the performance point of view, it is not the same to only compute-
processdata as to carry out computing periods and communication periods. It is clear that,
for instance, thecache memory must be shared or used during all the periods and, thus, it is
not the same to make a whole matrix multiplication as to process a third, communicate
data, process the second third, communicate data, and process the last third.

When there are heterogeneous machines, the impact of communications in the computing
performance will not be necessarily the same. Using the example of the use of cache
memory, the impact on the computing performancecan bedifferent in principle, depending
on the size of the cache memory. Appendix A shows the great variety of sizes and types of
cache memory of CeTAD’s machines.

Each computer local performance can be assessed by using the values that sum up the
parallel running for five and ten data machines in Table 4.17, and in Table 4.18,
respectively. Table 4.19shows the Mflop/s of each machine when the parallelization of a
2000x2000 element matrix multiplication in five computers with the algorithm SeqMsg(UDP)
is considered. Table4.20shows the Mflop/s when all computers are used. It is important to
notice that:
p The performance in each computer remains invariant as more machines are added and,

127

Chapter 4: Experimentation Parallel Computing in Local Area Networks

thus, as granularity decreases. It must be recalled that increasing granularity implies
increasing the quantity of messages for this algorithm and, thus, there exists more
quantity of computing periods during which less quantity of operations are carried out.

p Each computer performance is quite near to the optimum, taking as optimum that
obtained when only sequential computing operations are run. In this sense, the tests
carried out can be taken as referenceto assessthe relativecomputing capacity, which for
the case of CeTAD machines appears in Figure 4.4, and for purmamarca in particular
in Figure 4.5.

Name Rows Tot. Comp. Mflop/s

purmamarca 555 14,15 314

cf1 426 14,14 241

cf2 426 14,09 242

sofia 394 14,40 219

fourier 199 14,78 108

Table 4.19: Mflop/s of SeqMsg(UDP) with Five Machines and n = 2000 in CeTAD.

Name Rows Tot. Comp. Mflop/s

purmamarca 454 11,81 307

cf1 349 11,84 236

cf2 349 11,82 236

sofia 324 11,97 216

fourier 164 12,67 104

Josrap 142 12,10 94

tilcara 104 12,08 69

paris 48 11,59 33

cetad 38 11,98 25

prited 28 12,65 18

Table 4.20: Mflop/s of SeqMsg(UDP) with Ten Machines and n = 2000 in CeTAD.

Load Balance of SeqMsg(UDP). As it can be calculated from the values summed up by
the parallel running times of the different tables, there appear some differences in terms of
the time dedicated to local computation that should be explained in accordance with the
load balanceof that defined for the algorithm. The differences in local computing time that
can be identified are:
p In Table 4.19,the shortest computing time is that of cf1, 14.09seconds, and the longest

computing time is that of four ier, 14.78seconds. The time percentage implied by this
unbalance is inferior to the 5% of the shortest computing time.

p In Table 4.20, the shortest computing time is that of par is, 11.59 seconds, and the

128

Parallel Computing in Local Area Networks Chapter 4: Experimentation

longest computing time is that of four ier, 12.67seconds. The time percentage that this
unbalance implies is inferior to the 10% of the shortest computing time.

It is clear that, even though from this theoretical point of view we can reach an equation or
expression that allows an exact load balance, there exist differences in running times. Only
as example, computers cf1 and cf2 are equal (Table 4.1 and Appendix A), and it can be
proved both in Table 4.19and Table 4.20that computers have been assigned with thesame
processing load, though with different local computing times. In general, and
independently of the types of computers, algorithms, and the ways of balancing the load,
there will always be a minimum of differences in terms of running times.

Another source of a minimum load unbalance is given by the very definition of the
algorithm. As explained in the previous Chapter, the load balance is implemented by
assigning the result matrix row quantity corresponding to each computer’s relative
computing capacity. Consequently, the amount of data to be calculated in each computer is
given in number of rows of the result matrix. However, the relative computing capacity of
computers cannot always be expressed as multiples of each other (or multiples of the
reference one) and, besides, the total quantity of rows will not always be distributed
completely following this strategy. Thus, the correction factor “of a row” in the distribution
of data explained in the previous Chapter can be considered as the cause of a possible
workload unbalance.

Last, but not least, there is another important thing: the very heterogeneity of computers.
Even though each computer holds a computing capacity near to the optimal, this
“closeness” will not necessarily be equal in all of the cases. In other words, all the
computers count with a minimum percentage of performance penalization as regards
sequential computation when the parallel computation is being carried out, and this
percentage can vary according to the physical characteristics of computers. The variation in
this penalization percentage also generates a certain unbalance.

Even though all the load unbalance sources are accumulative, and despite the high
heterogeneity in terms of computers’ computing capacity, the worst that can be obtained
from experimentation in terms of load unbalance is less than 10% of the best local
computation.

OverMsg(UDP). All the details provided in terms of the analysis of result correspond to
the algorithm with sequential computation and communications in each machine. What
happens with the algorithm oriented to communications overlapped with local computation
is different, and Figure 4.37 clearly shows that some values are quite different from the
expected. In order to make a more complete comparison of the results obtained by both
algorithms, and in order to identify more clearly the differences with the PVM-based
implementation, the summary of parallel running with five machines is presented in the
first place in Table 4.21.

Comparing these values with those of Table 4.6corresponding to the implementation using
PVM broadcast, the conclusions are similar to those resulting from the comparison of the
algorithm SeqMsg, i.e., SeqMsg (PVM) with SeqMsg(UDP):
p Computing times are almost the same, i.e., in terms of local computing performance;

129

Chapter 4: Experimentation Parallel Computing in Local Area Networks

each computer has the same computing capacity (in Mflop/s, for instance).
p Communication times are very different; in this case, the broadcast performance using

UDP is approximately ten times better than that of PVM.

Name Rows Tot. Comp. Per It. Tot. Msg.

purmamarca 555 16,63 3,33 5,96

cf1 426 17,30 3,46 5,45

cf2 426 17,31 3,46 5,42

sofia 394 18,29 3,66 4,33

fourier 199 16,53 3,31 5,98

Table 4.21: Summary of OverMsg(UDP) with Seven Machines and n = 2000 in CeTAD.

When the values of Table 4.21 are compared to those of Table 4.17, it can be noticed that:
p Local computing times of OverMsg(UDP) are higher than those of SeqMsg(UDP),

which is to be expected since not only data are transferred among computers, but also, in
a same time interval, computing processes are run in each computer with
communication processes, and thus the competition of the CPU and the cache memory,
for instance, is greater and this is translated into a longer computing time.

p OverMsg(UDP) communication times are approximately a third of those obtained with
SeqMsg(UDP). Since in fact the same data quantity is transferred among computers, a
large part of each data transference occurs while a partial matrix of the result matrix is
being solved in each computer. In this sense, at least for five computers, the overlapping
of communications can be considered satisfactory.

However, as clearly seen in Figure 4.37,from the inclusion of til cara, the performancenot
only is less than the expected, but also decreases significantly. Even though it can be
proved by the inclusion of each of the machines from til cara (par is, cetad and pr ited),
what happens can be identified quite clearly with all machines’ running summary shown in
Table 4.22.

Such as Table 4.22 shows, the local computing time of the six computers with highest
computing capacity of CeTAD (purmamarca, cetadfomec1, cetadfomec2, sofia, four ier,
and Josrap) is quite similar among each other - of approximately 13±0.45 seconds. The
computing time of the four remaining computers is quite longer and with greater disparity
among each other - of approximately 20±5 seconds. Theexplanation of this is quite simple,
and is related to the competition for the resources previously mentioned. In this algorithm,
which carries out communications overlapped with local computation, it is clear that there
should exist one or more processes in each computer being run (transferring data) while a
partial computing period is being solved. This means that during the execution of a
computing period, the most important resources (CPU and cache memory) will be shared
with the communication process/es. This generates a degradation of the computation
performance, and, in addition and according to Table 4.22, some computers can overlap
computation and communications much better than others.

130

Parallel Computing in Local Area Networks Chapter 4: Experimentation

Name Rows Tot. Comp. Per It. Tot. Msg.

purmamarca 454 12,39 1,24 21,08

cf1 349 12,99 1,30 20,48

cf2 349 13,01 1,30 20,46

sofia 324 13,45 1,34 20,07

fourier 164 13,28 1,33 20,18

Josrap 142 12,82 1,28 20,80

tilcara 104 18,34 1,83 15,08

paris 48 16,91 1,69 16,39

cetad 38 23,26 2,33 9,90

prited 28 24,81 2,48 7,91

Table 4.22: Summary of OverMsg(UDP) with Ten Machines and n = 2000 in CeTAD.

Thus, the differences in the performanceof computations overlapped with communications
depend on several factors, such as the system bus architecture or the I/O methodby means
of which data are communicated through the installed interfacenetboards. Even though it
is quite diff icult to explain in more detail what happens in each computer, this means that
some computers are not really capable of actually overlapping local computation with
communications but they sequentialize computation with communications and, thus, their
performance is the same to that obtained with the sequential computation and
communication algorithm. It could even be worse because, with OverMsg, there is much
overhead at the level of processes being run and being handled by the operating system
(generating a higher quantity of context changes, for instance).

Even though from the point of view of the total performance this explanation is not
satisfactory (in fact, imposes a physical limit since it depends on the hardware of the same
computer), the very algorithm with computation overlapped with communications becomes
a benchmark. In other words, OverMsg(UDP) allows, automatically and independently of
computers, to know with enough precision whether they are capable of overlapping
computation with communications. In fact, this case may render an approximate
quantification that could be based on the differences in time applied for computation in
each computer. This benchmark is more significant when the fact that standard sequential
computing computers are being used is acknowledged, when the possibilit y of overlapping
computation with communications via one or more network interfaces does not seem to be
among the primary objectives of the design.

Even though there exists an approximate explanation for the lossof the parallel computing
performanceas from the inclusion of til cara, it seems reasonable to analyze in more detail
what happens with each machine computing performance in particular and the actual load
balance of the parallel machine.

OverMsg(UDP) local-sequential computing performance. As expected, and due to the

131

Chapter 4: Experimentation Parallel Computing in Local Area Networks

reasons already mentioned, computers’ computing performancedecreases in relation to the
optimal situation, i.e., when only local computation is carried out. Since machines are
heterogeneous, the decrease is also heterogeneous, depending on each computer’s
architecture.

Leaving aside the machines sequentializing computation and communications (from
til cara), it could be said that the cost of overlapping communications with local
computation is less than the benefit since, in fact, the total performance increases.

OverMsg(UDP) Load Balance. Since the load balance is made by using the sequential
computing performance and due to the heterogeneous interference of data transference
processes on those of computation, OverMsg(UDP) load balance can be even worse than
that of SeqMsg(UDP). Leaving aside the analysis of the load balance of those computers
incapable of “effectively” overlapping communications with local computation from the
performancepoint of view, the unbalance is just below the 10% in the case of the CeTAD
computers. However, when this unbalancebecomes significant, the running summary data
can be used to redefine the distribution of data and distribute data in function of the
computing performance assuming communications overlapping.

4.8.1.2 Matrices of 3200××33200 Elements

The speedup values obtained when we take as reference the greatest problem’s running
time that can be solved in the computer with highest computing capacity - i.e. matrices of
order n=3200 in purmamarca - are shown in Figure 4.38, together with those shown in
Figure 4.18.

Figure 4.38: Speedup of Algorithms with UDP in the CeTAD Network for n = 3200.

As it can be noticed in Figure 4.38, none of the cases exceeds the estimation of
SeqMsg(Mf), which is the optimal performance taking into account only the computing
contribution of each of the computers without taking into account any time related to
communications.

132

 purmamarca +cf1 +cf2 +sofia +fourier +Josrap +tilcara +paris +cetad +prited
0

3

5

8

10

13

15

18

20
Comp(Mf)
Comp(rsf)

OverMsg(Mf)

SeqMsg(Mf)

Mem(1=> ok)
OverMsg(PVM)

SeqMsg(PVM)

OverMsg(UDP)
SeqMsg(UDP)

Parallel Computing in Local Area Networks Chapter 4: Experimentation

The really low performanceobtained up to the inclusion of four ier is directly related to the
algorithm memory requirements in each computer. More specifically, cetadfomec1,
cetadfomec2 and four ier have only 32 MB of installed memory and, thus, they are more
likely to use swap memory space during the partial computations of the result matrix.

The values that sum up the parallel running appearing in Table 4.23 make clear that
four ier is the computer that requires much more time than the rest in order to solve local
computations. However, the values of Table 4.23also show that a large part of the running
time in all the machines is dedicated to the wait of broadcast messages transferenceand, in
this case, this time can be affected by the use of the swap memory during the execution.

Name Rows Tot. Comp. Per It. Tot. Msg.

purmamarca 887 56,94 11,39 334,81

cf1 682 78,11 15,62 316,04

cf2 682 79,75 15,95 314,29

sofia 631 57,31 11,46 334,65

fourier 318 193,88 38,78 224,60

Table 4.23: Summary of OverMsg(UDP) with Five Machines and n = 3200 in CeTAD.

In some way, the memory estimation,Mem, in Figure 4.38is showing that just with all the
computers it is likely that there will not be any memory problems. The need of recurring to
the swap memory makes:
p Both computing and communications processes have part of their executable code in

secondary memory and, thus, they can bediscontinued at some moment of theexecution
in order to recover the code.

p Both computing and communications processes have part of their data in secondary
memory and, thus, they can be discontinued at some moment of the execution in order
to recover those data.

p For all the processes, the swap time generates a delay in terms of running times, but in
the case of communication processes the penalization can be even greater sincethey can
lose data that are being sent during the swap time.

According to Figure 4.38, from the inclusion of Josrap, the performance is much higher,
even though there are not so many variations with the inclusion of the rest of the
computers. From the inclusionof Josrap, theswap memory is not used, or theusedoes not
significantly penalize the execution of computing and communication processes. Table
4.24 shows the parallel execution summary with seven computers. Notice the important
advance in computing performance as well as in communications performance.

133

Chapter 4: Experimentation Parallel Computing in Local Area Networks

Name Rows Tot. Comp. Per It. Tot. Msg.

purmamarca 771 56,16 8,02 45,35

cf1 593 77,28 11,04 25,67

cf2 593 78,11 11,16 25,37

sofia 549 59,70 8,53 42,75

fourier 276 58,26 8,32 44,41

Josrap 242 52,93 7,56 47,07

tilcara 176 73,54 10,51 29,25

Table 4.24: Summary of OverMsg(UDP) with Seven Machines and n = 3200 in CeTAD.

In this particular case, the total computing time is “dominated” by the local computing time
of computer cetadfomec2, which is still using the swap memory space. Since memory
requirements on four ier have decreased with respect to the use of five computers, its
running time dedicated to computation has significantly decreased in relation to that of
Table 4.23.

Thus, when the swap memory use no longer influences the total parallel computation of
one or more machines, the expected performance of the algorithm is obtained, interspersing
computing periods with communications. In the specific case of SeqMsg(UDP), this goes
on until communication times become very relevant or dominate the total time, which is
giving an idea that the granularity of the problem is not suitable for more than eight
machines. Still , there is no much loss of performance. In the specific case of
OverMsg(UDP), once machines are used up to their maximum capacity (or at a relatively
high percentage of their maximum capacity), the computers not capable of overlapping
computation with communications are starting to be used, and, thus, the same performance
as with SeqMsg(UDP) is obtained.

If the memory estimation is taken as referenceto establish the quantity of computers (in an
a priori selection) - Mem in the speedup graphics-, all the machines should be used. The
result obtained for thematrix multiplicationof 3200x3200elements using the ten machines
of CeTAD is approximately nine times the performance of purmamarca for the same
memory size. This performancecould be considered as “superlinear” , sincethe sum of the
relative computing powers of all CeTAD’s machines is lessthan five times the computing
purmamarca. Once more, it should be born in mind that the reference time for this
speedupcomputation is the “actual” multiplication running time for matrices of order
n = 3200, that in purmamarca implies the use of swap memory and a really high
penalization with respect to the maximum processing capacity of this computer (without
the use of swap memory space).

134

Parallel Computing in Local Area Networks Chapter 4: Experimentation

4.8.1.3 General Conclusions of the Experimentation in CeTAD

Even though the results obtained in CeTAD do not appear to be encouraging – sinceboth
SeqMsg(UDP) and OverMsg(UDP) decrease instead of increasing as from a given number
of computers (Figure 4.37 and Figure 4.38) -, some quite significant information can be
obtained from the experimentation carried out:
p The algorithm OverMsg(UDP) can be used as benchmark in order to identify which

computers are capable of overlapping successfully computation with data transferences.
p In general, the optimal speedup estimation is not that which is eventually obtained by

theoverhead imposed by netboards, theoperating system, etc.; however, by knowing the
computers capable of overlapping computation with communications, it will be possible
to define the quantity of computers to be used for a certain problem. More specifically:
which ones.

p Memory requirement estimation, though not exact, can be useful when it is possible that
some or all the computers may have problems with respect to the use of the swap
memory space. When this information is obtained, it will be possible to choose the
algorithm to be used (SeqMsg or OverMsg), depending on whether the computers to be
included in the parallel computation are capable of overlapping computation with
communications.

4.8.2 LQT Local Area Network

Most of the explanations made within the context of the experimentation in the CeTAD
local network can be applied (may beonanother scale) to theexperimentations made in the
LQT local network.

Figure 4.39shows the speedupvalues obtained in the LQT local network by the algorithms
implemented using UDP, SeqMsg(UDP) and OverMsg(UDP), for matrices of order
n=5000 together with those of Figure 4.19.

Figure 4.39: Algorithm Speedup with UDP in the LQT Network for n = 5000.

135

 lqt_07 +lqt_06 +lqt_02 +lqt_01 +lqt_03 +lqt_04

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
Comp(Mf)

Comp(rsf)

OverMsg(Mf)

SeqMsg(Mf)

Mem (1=> ok)

OverMsg(PVM)

SeqMsg(PVM)

OverMsg(UDP)

SeqMsg(UDP)

Chapter 4: Experimentation Parallel Computing in Local Area Networks

The speedup estimation for the sequential computation and communication algorithm is
almost exact in relation to what is obtained from the experimentation, which is really
satisfactory. In addition, it proves that the problem of SeqMsg(PVM)’s low performance,
i.e. of the algorithm implemented using the PVM library, is precisely PVM’s broadcast,
which does not make use of the characteristics of the Ethernet network.

It is also evident that O(n3) –as regards this problem’s requirements for floating-point
operations - is as influencing in the total parallel running time as the O(n2) of the data
quantity to be transferred through broadcast messages. For this reason, both the estimation
of SeqMsg(Mf) optimal speedup and the speedup obtained in the SeqMsg(UDP)
experimentation represent approximately the 50% of the optimal speedupindependently of
the algorithm used and of the communication network Comp(Mf).

Even though the algorithm with overlapped computation and communications does not
reach the optimal speedup calculated for this algorithm, OverMsg(Mf), in the
experimentation, it does not only have a better performance than the sequential
computation and communication algorithm, but it also shows at least three aspects:
p Each computer’s capacity to overlap, at least in part, the local computation with

communications via the interconnection network. In fact, as it can be noticed in Figure
4.39, the final result in terms of performance is capable of overlapping approximately
the 50% of communications.

p The overhead influenceimposed by the operating system on other software layers is not
worthless, and in fact is that which “consumes” the difference between OverMsg(Mf)
and OverMsg(UDP).

p The application’s granularity makes the obtained speedup,OverMsg(UDP), increase as
more computers are added. In other words, the local computing time is comparable to
the communications time and a good percentage of communications can be overlapped
with the processing.

As regards computation overlapping with communications, what happens is in fact the
same as (or similar to) what has been explained for the CeTAD network. Table 4.25shows
the running summary of SeqMsg(UDP) with all the machines of LQT in order to solve a
matrix multiplication of order n = 5000 in parallel, and Table 4.26 show the running
summary of OverMsg(UDP).

Name Rows Tot. Comp. Per It. Tot. Msg.

lqt_07 1089 85,58 14,26 89,66

lqt_06 1089 86,36 14,39 88,94

lqt_02 835 87,94 14,66 87,41

lqt_01 811 90,54 15,09 85,17

lqt_03 589 90,15 15,02 85,20

lqt_04 587 89,94 14,99 85,36

Table 4.25: Summary of SeqMsg(UDP) with Six Machines and n = 5000 in LQT.

136

Parallel Computing in Local Area Networks Chapter 4: Experimentation

Name Rows Tot. Comp. Per It. Tot. Msg.

lqt_07 1089 91,40 15,23 28,69

lqt_06 1089 91,11 15,19 28,95

lqt_02 835 99,53 16,59 20,59

lqt_01 811 95,30 15,88 24,38

lqt_03 589 96,68 16,11 22,80

lqt_04 587 96,43 16,07 22,89

Table 4.26: Summary of OverMsg(UDP) with Six Machines and n = 5000 in LQT.

From the comparison of the running times shown in each table, it can be said that:
p The computing periods in the execution of OverMsg(UDP) are quite higher than those

of SeqMsg(UDP) due to the competition for the resources with the processes in charge
of communications “ in background”.

p In the execution of OverMsg(UDP), a large percentage of communications is carried out
“during” the local computing time. Whereas each computer must wait in average
approximately 87±3 seconds for the data transference during the execution of
SeqMsg(UDP), the wait is, in average, of approximately 25±4 seconds during the
execution of OverMsg(UDP).

Figure 4.40shows the speedupvalues obtained in the LQT local network by the algorithms
implemented using UDP, SeqMsg(UDP) and OverMsg(UDP), for matrices of order n = 9000
together with those shown previously in Figure 4.20.

Figure 4.40: Algorithms’ Speedup with UDP in the LQT Network for n = 9000.

Once more, the optimal performance estimation of the sequential computation and
communication algorithm, SeqMsg(Mf), is almost the same as the obtained in the
experimentation,which is SeqMsg(UDP). In the case of the optimal speedupestimation for

137

 lqt_07 +lqt_06 +lqt_02 +lqt_01 +lqt_03 +lqt_04

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0
Comp(Mf)

Comp(rsf)

OverMsg(Mf)

SeqMsg(Mf)

Mem (1=> ok)

OverMsg(PVM)

SeqMsg(PVM)

OverMsg(UDP)

SeqMsg(UDP)

Chapter 4: Experimentation Parallel Computing in Local Area Networks

the overlapped computing and communication algorithm, OverMsg(Mf) is quite near to the
obtained, OverMsg(UDP). The relative difference among values is quite inferior to that
shown in Figure 4.339,and this is given due to the influence of the O(n3) of computing
requirements on the O(n2) of communications requirement. And, it is evident that this
differencemakes the computing time percentage quite superior to that of communications
for 9000×9000 element matrices than for 5000×5000 element matrices.

The performanceobtained for the multiplication of matrices of 9000×9000elements using
the six machines of LQT is of approximately 5.5 times the performance of lqt_07 for the
same memory size. This performance could be considered as “superlinear” , since the sum
of the relative computing powers of all LQT’s machines is of approximately 4.5 times the
computing capacity of lqt_07. Oncemore, it should be born in mind that the referencetime
for this speedup calculation is the “actual” running time for matrices of order n = 9000,
which, in lqt_07, implies the use of swap memory.

4.8.3 LIDI Local Area Network

Figure 4.41 shows the speedup values obtained in the LIDI local area network for the
algorithms implemented using UDP, SeqMsg(UDP) and OverMsg(UDP), for the
multiplication of matrices of order n = 2000 together with those previously shown in
Figure 4.21.

Figure 4.41: Algorithms’ Speedup with UDP in LIDI Network for n = 2000.

In order to compare the estimation of thealgorithms’ speedupoptimal values, SeqMsg(Mf)
and OverMsg(Mf) with those obtained, SeqMsg(UDP) and OverMsg(UDP), it should be
remembered that communication times are estimated basing on a network ten times faster
than those of CeTAD and LQT. This, in turn, makes any overhead over the optimal
computing time have a greater impact on the LIDI network than the two remaining. As
general conclusions from Figure 4.41, it can be said that:
p Both SeqMsg(UDP) and OverMsg(UDP) are inferior to the corresponding estimations.

138

 lidipar14 +lidipar13 +lidipar12 +lidipar9 +lidipar8 +lidipar7 +lidipar6 +lidipar5

1

2

3

4

5

6

7

8
Comp(Mf)

Comp(rsf)

OverMsg(Mf)

SeqMsg(Mf)

Mem (1=> ok)

OverMsg(PVM)

SeqMsg(PVM)

OverMsg(UDP)

SeqMsg(UDP)

Parallel Computing in Local Area Networks Chapter 4: Experimentation

OverMsg(UDP) is the farthest from the estimations.
p Both algorithms have better performance as the quantity of computers increases. It is

evident that the highest capacity of the communication network as well as the acceptable
performance obtained with broadcast messages are important factors for this to happen.

p The algorithm designed to overlap communications with local computation in each
machine, OverMsg, is better than that of sequential computation and communications,
SeqMsg. This in turn indicates that computers are capable of overlapping effectively, at
least in part, local computation with communications through the interconnection
network.

Figure 4.42 shows the speedup values obtained in LIDI local network by the algorithms
implemented using UDP, SeqMsg(UDP) and OverMsg(UDP), for the multiplication of
matrices of order n = 3200 together with those shown previously in Figure 4.22.

Figure 4.42: Algorithms’ Speedup with UDP in LIDI Network for n = 3200.

These might be the best results of all the obtained in terms of performance. Such as Figure
4.42 shows, the eight computers of LIDI can solve a matrix multiplication of 3200x3200
elements more than 25 times faster than the very multiplication in one of them (they are all
equal). Anyway, it should be reminded that the sequential reference time for the
multiplication of matrices of order n = 3200is penalized -with respect to the optimal- by
the use of swap memory during the computations.

Oncemore, OverMsg(UDP) is better than SeqMsg(UDP), sincecomputers can effectively
overlap communications and local computation, and the algorithm also makes effectively
use of this capacity. Figure 4.42 also shows that the algorithms’ performance always
improves when the number of computers is increased. This indicates that, as expected, the
algorithm is scalable (at least up to eight computers) and, in particular, the implementation
of broadcast messages among user processes using UDP is also scalable. Unlike with
matrices of order n = 2000,with matrices of order n = 3200,the speedup values obtained
are near to those estimated for the algorithm, all of which does nothing but prove the
importanceof the O(n3) of computation over the O(n2) of communications, which over the
LIDI local network is heightened in comparison to those of the CeTAD and LQT.

139

 lidipar14 +lidipar13 +lidipar12 +lidipar9 +lidipar8 +lidipar7 +lidipar6 +lidipar5

5

10

15

20

25

30

35
Comp(Mf)

Comp(rsf)

OverMsg(Mf)

SeqMsg(Mf)

Mem (1=> ok)

OverMsg(PVM)

SeqMsg(PVM)

OverMsg(UDP)

SeqMsg(UDP)

Chapter 4: Experimentation Parallel Computing in Local Area Networks

4.9 Conclusions - Experimentation Summary

Once the characteristics of local networks in terms of computers and interconnection
networks presented at the beginning of the chapter are identified, the results of the
experimentation carrying out PVM as message-passing library, in general, and broadcast
messages, in particular, are presented. From this experimentation:
1. The performancewith PVM is unacceptable. In all local networks, i.e. independently of

the number of machines, their heterogeneity or homogeneity, sizes of matrices used, and
physical interconnection network performance, the results were the same: the
performance worsens as more computers are used.

2. When making the execution profile with the minimum instrumentation, it is clear that
the performance problem is always triggered by the PVM library broadcast routine,
which is implemented by multiple point-to-point messages.

A broadcast message directly based on UDP protocol is proposed and implemented since,
in principle, none of the general purpose message-passing libraries can assure a priori the
optimized performance of broadcast messages. The same experiments previously carried
out with PVM are repeated, concluding that:
3. The algorithm with computing and communication periods sequentially run (SeqMsg)

provides, in most of the cases, the expected the performance. Exceptions can arise in the
case of using swap memory in some computers.

4. The algorithm SeqMsg provides performancethat improves when the size of matrices is
not the highest (or scalates together with the quantity of computers).

5. The algorithm organized to overlap the computing and communication periods
(OverMsg) has a better performance than the SeqMsg in all the cases, reason why the
performanceobtained by this algorithm can be considered as acceptable in all the local
networks used.

6. The algorithm OverMsg can be used quite simply as benchmark with two purposes:
1. Identification, in a simple manner, of the communications that can be carried out

overlappedly (in background) while local computing is carried out in each
computer.

2. Identification of computers which are not capable of running computing and
communications overlappedly and which thus penalize the parallel performance
of the whole network used. In this sense, OverMsg can be used to discard such
computers, or to yield a maximum of usable computers for a given application.

7. Both SeqMsg and OverMsg provide a very satisfactory speedup if the application or,
more precisely, the size of the application affects the sequential performance due to he
swap memory of the computer in which it is solved.

8. Both SeqMsg and OverMsg can be satisfactorily used both in homogeneous and
heterogeneous clusters since in all the cases we can obtain optimized performance of

1. Local computing of each computer and specifically balanced.
2. Communications over the Ethernet interconnection network with broadcast

messages.

140

