
Chapter 5: Comparison with ScaLAPACK

This chapter presents two important aspects as regards the validity and use ofthe contributions of
this thesis: 1) Application of parallelization principles in homogeneous environments dedicated to
parallel computing for two specific cases: matrix multiplication and matrix LU factorization; and
2) Comparison of the results obtained by experimentation in terms of the ScaLAPACK library
performance. This library is specifically dedicated to homogeneous parallel computing platforms
with distributed memory, and is generally accepted as that implementingthe best existing parallel
algorithms in terms of accessibility and performance optimization.

The use of the ScaLAPACK library is, until now, oriented only to homogeneous hardwareand,
thus, the homogeneous network which we have worked with is initially taken intoaccount.
However, for this comparison, we have had the possibility of counting with a second homogeneous
network, which is also described (at least, the necessary) in this chapter. In a certain way, several
characteristics of the experimentation change in this chapter for two reasons: 1) The
experimentation is classic and simple as regards tests. For instance, there is no analysis of the
problem sizes off the limits of each machine's memory since what we are aiming at is the direct
comparison of the algorithms; 2) We only take into account homogeneous computer networks,
since otherwise comparison with the algorithms implemented in ScaLAPACK will not be possible
or would be "biased".

This chapter also adds the problem of matrix LU factorization, to which the same parallelization
concepts as those of matrix multiplication are applied. In this case, the objective has not been the
exhaustive examination of algorithms, implementations, etc. - as in the case of matrix
multiplication-, but the direct application of parallelization principles tothis specific problem. For
this reason, the description of the problem in itself and of parallel algorithmswill not be
exhaustive.

Chapter 5: Comparison with ScaLAPACK Parallel Computing in Local Area Networks

5.1 ScaLAPACK General Characteristics

It is really interesting to highlight that algorithm analysis and algorithm proposals for
solving parallel linear algebra problems are closely related to the traditional parallel
machines (such as those belonging to the "Ad Hoc" and "Commercial" parallel computer
types of Chapter 1, Figure 1.2). In consequence, the analysis carried out for the case of
matrix multiplication is applicable to the rest of the operations included in ScaLAPACK
and/or used to solve them.

From the point of view of ScaLAPACK implementation, we can identify several software
"layers" [21], which are shown in Figure 5.1 from the point of view of the software to be
used in each computer.

Figure 5.1: A Layered Vision of ScaLAPACK.

As anintegrating part of ScaLAPACK, we make special emphasis on the basic operations
(like in the LAPACK context), which are called PBLAS (Parallel Basic Linear Algebra
Subroutines). All what is related to local computing in terms of calculationsor operations
of matrix computing remains directly related to BLAS (Basic Linear Algebra Subroutines),
and, in this way, we take advantage of all the efforts and developments of several years of
research. On the other hand, we should take into account the need of communication
among parallel computer processes, in general, and distributed memory parallel computers,
in particular, and we thus add BLACS (Basic Linear Algebra Communication
Subroutines).

The addition of BLACS is interesting from two points of view:
• As previously mentioned, we are aware of the need of communicating among processes

in a distributed memory environment. In this sense, we tend to discard the possibility of
shared memory (let be it physically distributed or not), and we tend to adopt the
message-passing programming model of distributed parallel architectures. This decision
is, in turn, directly related to the obtaining the optimized performance in terms of
computing and communications.

• None of the available message passing libraries is directly used: nor those of free use
(PVM, and MPI implementations) or those provided by commercial companies of
parallel computers which are specifically optimized for their interconnection networks
(IBM, for instance, for their SP machines). In fact, there exist free-use BLACS
implementations which make direct use of PVM or MPICH (one of MPI
implementations).

142

ScaLAPACK
 PBLAS

 BLAS BLACS

Parallel Computing in Local Area Networks Chapter 5: Comparison with ScaLAPACK

Parallel algorithms implemented in ScaLAPACK are strongly influenced by those
proposed in the area of multicomputers with processor bi-dimensional interconnection or
organization or with even more complex interconnection networks, such as those of
hypercube topology [2] [3] [21]. This decision is oriented to using and taking advantage of
all the investigations and results obtained to the present. However, this type ofalgorithms
tends to count with a high performance penalization in the cluster context, since with
clusters based on Ethernet interconnection networks and with general purpose operating
systems (Linux, AIX, IRIX, Solaris, etc.), the cost-communication relations is several
orders of magnitude worse (for parallel application performance) than in traditional
multicomputers. The most important reason for this to happen is that neither Ethernet
networks nor the traditional operating systems are thought for parallel computing, alike
multicomputers, which are built for parallel computing.

Consequently, it is easy to understand why clusters, over which libraries likeScaLAPACK
are used and where parallel computing tasks are generally solved, are restricted to the
completely "switched" wiring. With this type of wiring it is possible to carry out multiple
point-to-point communications, and this makes the hardware similar to that of
multicomputers. However, we shall see that the cost of completely "switched"networks
increases much more than linearly in function of the quantity of interconnected computers.

5.2 LU Factorization Parallelization

The matrix factorization method called LU is widely known and accepted, bothin terms of
its use and its numerical stability properties (specifically, when pivoting is, at least,
partially used), as computing and storage requirements. Theinitial definition of the method
is oriented to the solution of equation systems, and is directly based on what is known as
Gaussian elimination [27]. Initially, the block LU factorization sequential algorithm is
described, and then the proposed parallel algorithm for computer clusters is presented,
following the same principles used in matrix multiplications.

5.2.1 Block LU Factorization Sequential Algorithm

Given a square matrix A of order n, two matrices usually called L and U, also square and of
order n, are searched for such that

A = L×U (5.1)

where L is lower triangular and U is upper triangular.

If A is not singular, it can be proved that L and U exist [59]. The LU factorization method
does nothing but successively apply Gaussian elimination steps so that the elements of L
and U matrices are computed iteratively [84]. Generally, and with the objective of

143

Chapter 5: Comparison with ScaLAPACK Parallel Computing in Local Area Networks

stabilizing the calculations from the numerical point of view (to basically delimit the error),
the partial pivoting technique is incorporated within the LU method.

From the point of view of memory requirements, no requirement other than the storage of
matrix A being factorized is added, and thus is kept in the O(n2). From the point of view of
computing requirements, the number of floating point operations needed for LU computing
is O(n3). In this way, we get to the same basic relation as that obtained for level3 BLAS
operations, i.e. the number of floating point operations isO(n3) with O(n2) data being
processed.

With the objective of taking advantage of the underlying computing architecture in most of
the computers, and specifically of the memory hierarchy with the inclusion of at least a
cache memory level, most of the linear algebra operations have been defined in terms of
data blocks (or submatrices). Specifically within the context of the LU method,a partition
of matrix A is determined taking as basis a block or submatrix of A, A00, of b×b data, such
as Figure 5.2 shows.

Figure 5.2: Division of a Matrix in Blocks.

The LU factorization of A is sought, which expressed in function of the previous block
division will be such that

Figure 5.3: LU Factorization in Terms of Blocks.

where the following equations should be fulfilled, taking into account the submatricesof
A, A00, A01, A10, and A11, the submatrices of L different from zero, L00, L10 y L11, and the
submatrices of U also different from zero U00, U01 y U11.

A00 = L00 U00 (5.2)
A01 = L00 U01 (5.3)
A10 = L10 U00 (5.4)
A11 = L10 U01 + L11 U11 (5.5)

144

A
00

A
01

A
10

A
11

A
00

A
01

A
10

A
11

= ×

L
00

0

L
11

 0

 0
L

10

U
00

0
U

11

 0

 0

U
01

Parallel Computing in Local Area Networks Chapter 5: Comparison with ScaLAPACK

and matrices Lij are lower triangulars and Ukl (0 ≤ i, j, k, l ≤ 1) are upper triangular.

If LU factorization is directly (in theclasical way) applied to the block A00 of A, the
triangular matrices L00 and U00 are obtained such that Eq. (5.2) is directly verified (due to
the application of LU factorization method). Using Equation (5.3), L00×U01 = A01, and as
L00 is lower triangular, thus the triangular equation system solution method withmultiple
results (multiple right hand sides) can be directly applied in order to obtaineach of the
columns of U01. Likewise, or similarly, Eq. (5.4) is used to obtain L10, since L10×U00 = A10

and, in this case, U00 is upper triangular and the triangular equation system solution method
with multiple results (multiple right hand sides) can be also directly used.

It would only remain the computing of L11 and U11 in order to obtain the whole
factorization of matrix A. In this case, by Eq. (5.5), L11×U11 = A11 - L10×U01, i.e. finding
matrices L11 and U11 implies applying the same LU method by blocks to the (sub)matrix
resulting from A11 - L10×U01. What has remained explicitly unsaid is the necessary
processing related to the partial pivoting, which basically implies selecting the pivot and
exchanging the corresponding rows or columns.

With the previously explained method by blocks, all the operations can be defined in terms
of submatrices of the original matrix A, and, also, two processing characteristics that can
be successfully used in terms of code optimization are defined:
1. Most of the floating point operations are run to solve matrix A11 - L10×U01 update, which

is basically a matrix multiplication.
2. All the LU factorization method can be solved using two BLAS-defined routines, which

are that of triangular equation system resolution and matrix multiplication (_trsm and
_gemm, respectively in terms of BLAS C interface) and that of LAPACK (_getrf, in
terms of LAPACK C interface).

5.2.2 LU Factorization Parallel Algorithm for Multicomputers

The previously described method for LU factorization is almost directly implemented in
sequential computers, though it has some performance drawbacks in distributed memory
parallel computers. Data distribution has a decisive relevance in terms of performance from
two points of view: a) load balance, and b) scalability.

It is relatively easy to identify that, as the algorithm iterations advance, the left upper
corner of the matrix is computed, and this computed part is each time (each iteration)
greater. This directly implies that these data do not need to be updated and theynot even
take part in the following computations. Taking into account that data are distributed in
different computers, all the computers which have these data assigned to willnot use them
again neither for updating them nor computing others in function of them. In order to avoid
the load unbalance produced as the iterations advance, libraries such as ScaLAPACK and
PLAPACK use the distribution called two-dimensional block cyclic decomposition, such is
mentioned in [26] [21] [45] and detailed at the end of Chapter 3. The main ideas on which
this data distribution is based are:

145

Chapter 5: Comparison with ScaLAPACK Parallel Computing in Local Area Networks

• Having much more data blocks than processors, and in this way, the distribution makes
the same processor have blocks updated almost in every iteration. In consequence, all
the processors tend to have blocks which are updated in every iteration and they all
process in all the iterations.

• It is assumed that two-dimensional distributions are scalable enough at leastfor linear
algebra applications.

• The experimental work is generally carried out in multicomputers or in homogeneous
clusters with completely "switched" and high performance (in a way,ad hoc for parallel
processing) interconnection networks.

In consequence, the parallel algorithm used for LU factorization is directly based on the
description given for the LU computation in function of blocks, but with two-dimensional
and block-cyclic distribution of the matrix data.

5.2.3 LU Factorization Parallel Algorithm for Clusters

The guidelines for matrix LU factorization parallelization are basically the same as those
used for matrix multiplication:
• Message-passing programming model: processes locally computed and communicated

through messages with the remaining.
• SPMD (Single Program, Multiple Data) computing model: a same program run by every

computer using different data.
• One-dimensional data: the complete matrix is divided by rows or columns (not in both

ways, all of which would lead to two-dimensional distributions).
• Communication among processes only for broadcast messages: most of the data

transferences among processes (or all of them) are carried out via broadcast messages in
order to use to the maximum the characteristics of the Ethernet networks in terms of
transference data rates and scalability.

Data Distribution. Since all communications tend to be of broadcast type,one-
dimensional data distributions are favored over the two-dimensional or those which take
into account the interconnection in hypercubes, for instance. The communication (or data
transfer) among computers that is prone to be used is the very definition of the Ethernet
standard as regards the computers' logic interconnection with the only bus. In this sense,
data distribution is one-dimensional, though computers interconnection is not that of a ring,
which is considered as typical in the context of one-dimensional process organization [82].

Once data distribution is restricted to the one-dimensional ones, there are onlytwo similar
alternatives: by rows or by columns. Even though the initial proposal can be the divisionof
the complete matrix in as many parts as available processors (computers), this implies a
direct loss of processing load balance. If, for instance, there are four processors ws0, ws1,
ws2, and ws3, and the matrix is divided in four row blocks, such as Figure 5.4 shows, when
the rows assigned to processor ws0 are all processed, processor ws0 no longer has a
processing task. This means that, from this moment on, all the matrix factorization task is
carried out without the computing power of ws0. Something similar happens when the rows
assigned to ws1 are then processed, from which all subsequent processing is carried out
only in processors ws2 and ws3, and this clearly implies that the processing is not balanced

146

Parallel Computing in Local Area Networks Chapter 5: Comparison with ScaLAPACK

among the four processors.

ws0

ws1

ws2

ws3

Figure 5.4: Partition and Designation of a Matrix by Row Blocks.

In this moment, the idea of processing by blocks is directly used, as well as the so-called
block-cyclic distribution. A block size relatively small in relation to the total size of the
matrix is established, and the distribution is carried out by blocks of this chosensize. In the
case of one-dimensional distributions, this block size is the number of rows or columns
distributed as a unit. If, for instance, there are eight blocks and four processors, the block-
cyclic distribution is carried out as Figure 5.5 shows, where blocki is assigned to processor
i mod P, where P is the total number of computers.

ws0 ws1 ws2 ws3 ws0 ws1 ws2 ws3

Figure 5.5: Block-Cyclic Column Distribution.

The greater is the number of blocks, the greater will also be the resulting loadbalance.
Since, normally, the number of rows and columns of the matrices to be processed is much
greater than the number of computers, the load balance implemented in this way does not
present any inconveniences. On the one hand, data distribution is simple, and with very few
parameters to be defined (only the block size) and, on the other, the load balance necessary
to obtain acceptable performance in the LU factorization processing is obtained.

Processing. Like most of the numerical applications belonging to the area of linear algebra,
the processing model is SPMD; all the computers in the cluster run the same program. An
initial proposal, with computing and communication periods run sequentially in each of the
computers of the cluster, is shown in Figure 5.6 in pseudo-code for machine wsi with
0≤i≤P-1 [127]. As shown in the pseudo-code, all communications are of broadcast type
and, thus, if this type of data transfer is optimized among processes of a parallel application
(using the Ethernet network physical broadcast facility, for instance), thecomplete parallel
processing is optimized almost directly for the LU factorization.

147

Chapter 5: Comparison with ScaLAPACK Parallel Computing in Local Area Networks

Figure 5.6: Pseudo-code of a Parallel Algorithm for LU Factorization.

It should be noticed in the pseudo-code of Figure 5.6 that everything related to the handling
of pivots is explicitly incorporated because now the matrix is distributed among processors
and, thus, the interchanges produced by pivots should be explicitly distributed from the
computer factorizing a block. On the other hand, assuming, for example, that the matrix is
divided in row blocks, when a row block is factorized, the blocks which in Figure 5.2
appear as L00, U00 and U01 are already computed, and consequently, what remains to be
computed are the blocks corresponding to L10 (L in the Figure 5.6) and to A11-L10×U01

("trailing matrix" in Figure 5.6).

As in the case of matrix multiplication, the pseudo-code of Figure 5.6 imposes a verywell
defined and strict sequence of steps of local computing and communications with the rest
of the processes/processors. Also, as in the case of matrix multiplication,the computing
can be organized so as to carry out communications overlapped with local computing
(whenever possible) and, in this way, attempt to reduce the performance penalization
imposed by communications in the clusters. This proposal is shown in Figure 5.7 in
pseudo-code.

The algorithm of Figure 5.7 adds the idea of the "next block" to the classical algorithm of
Figure 5.6. Since LU factorization of a block and its corresponding send_broadcast_b
communication operation impose a waiting time to all the remaining processors, the next
block is factorized and sent "in background" so that it is available in the next iteration in
order to update the rest of the matrix.

148

for (j = 0; j < nblocks; j++)
{
 if (i == (j mod P)) /* Current block is local */
 {
 Factorize block j
 broadcast_send (factorized block j and pivots)
 }
 else
 broadcast_receive (factorized block j and pivots)
 Apply pivots /* */
 Update L /* Update local blocks */
 Update trailing matrix /* */
}

 ws
i

Parallel Computing in Local Area Networks Chapter 5: Comparison with ScaLAPACK

Figure 5.7: Parallel LU Factorization with Overlapped Computing and Communication.

5.3 Experimentation

Initially, we should define the parameters with which the experiments were carried out;
more specifically, in the case of the ScaLAPACK it is necessary to define:
• Communication Supporting Library (PVM, MPI implementation, etc.).
• Processors grid (two-dimensional processors array).
• Block Size.

Since ScaLAPACK is used in homogeneous environments, it is no longer necessary to
make reference to the relative computing power of processors for the load balance.In
addition, the speedup can be used directly as the performance index in order to compare the
parallel algorithms implemented in ScaLAPACK with others, such as those proposed in
this chapter and in chapter 3.

In order to avoid confusions, and since the comparison made in this chapter tends to
quantify the differences between the algorithms implemented in ScaLAPACK with those
proposed in this chapter and in chapter 3, the algorithms used are those tending to usethe
overlapped communication and computing facility among computers. In this way, there is a
single proposed algorithm for solving each of the tasks to be carried out in parallel: matrix
multiplication and matrix LU factorization.

149

if (i == 0)
 Factorize and broadcast_send block 0
for (j = 0; j < nblocks; j++)
{
 if (i == (j mod P)) /* Current block is local */
 Update local blocks
 else if (i == ((j+1) mod P)) /* Next block is local */
 {
 broadcast_recv_b (factorized block j)
 Update and Factorize block j+1
 broadcast_send_b (factorized block j+1)
 Update local blocks (block j+1 already updated)
 }
 else /* ws

i
 does not hold block j nor block j+1 */

 {
 broadcast_recv_b (factorized block j)
 Update local blocks (block j+1 already updated)
 }
}

 ws
i

Chapter 5: Comparison with ScaLAPACK Parallel Computing in Local Area Networks

5.3.1 Set of Experiments

Hardware. The first homogeneous network that will be used is the only one that has been
used under these conditions: the LIDI local network. However, there has been accessto
another local network that could be used and interconnected to the LIDI local network as
well. This second network is made up of 8 PCs with Duron processors with higher
computing and storing capacity than LIDI's PCs, with 10/100 MB/s Ethernet network
interconnection cards. In addition, since we could use other two Ethernet switches (apart
from that of the LIDI local network) of 8 ports 100 MB/s, experiments can be carried out
with two more "parallel machines": one with the eight PCs with Duron processors
completely interconnected by a switch, and the other with a combination of the two
networks with three switches. Finally, in the last of these experimentation sections, the
results obtained in the last of the homogeneous clusters will be shown, in which
experiments more specifically oriented to comparing the performance of the algorithms
proposed in this thesis and those implemented by ScaLAPACK were carried out.

The network with the eight PCs with Duron processors and a single switch (which will be
called hereinafter LIDI-D), is a classical homogeneous cluster, like the very LIDI network,
though it has an important difference with the LIDI network: the computing-
communication ratio. Since computers of the LIDI-D network have a higher computing and
storing power and the same interconnection network as those of the LIDI network, the
difference in the computing-communication relation between them can be quantified by
using directly the computing power differences among PCs. Table 5.1 briefly shows the
characteristics of the PCs of the LIDI-D cluster, together with their computing capacity
expressed in terms of Mflop/s.

Processors Clock Freq. Memory Mflop/s

AMD Duron 850 MHz 256 MB 1200

Table 5.1: Characteristics of the Computers of the LIDI-D Cluster.

Since PCs of the LIDI-D have a performance of approximately of 1200 Mflop/s, slightly
more than the double of LIDI network computers, it can be asserted that the computing-
communication ratio of the LIDI-D network is approximately two times worse for parallel
computing than that of the LIDI network. In other words, at the same time interval:
• LIDI-D computers can perform the double of the computations than those of the LIDI

network..
• LIDI-D computers can transmit the same amount of data than those of the LIDI

network..
The amount of RAM installed in the computers of the LIDI-D network is of 256 MB, with
which bigger than those tested in the LIDI network can be tested.

In the case of the combination of both networks with three switches of eight ports, the
situation is not so common for two reasons: a) there does not exist homogeneity in the
sixteen PCs; b) there is not complete "switching" capacity, i.e. it is not possible to combine
all the simultaneous communications of both PCs at the same time. Figure 5.8 shows how
to interconnect the sixteen PCs (PIII0, …, PIII7 of the LIDI network, and D0, …, D7 of the

150

Parallel Computing in Local Area Networks Chapter 5: Comparison with ScaLAPACK

LIDI-D network) with three switches of eight ports, where we can clearlyobserve how the
complete "switching" capacity is lost among the eighteen PCs. From now on, thislocal
network with sixteen PCs will be called LIDI-16.

Figure 5.8: LIDI and LIDI-D Networks Interconnected with Three Switches.

In the LIDI-16 network, and from the performance point of view, it will be taken into
account that all the computers have the computing power of the LIDI network's computers,
i.e. they are considered as homogeneous. The ScaLAPACK performance and that of the
algorithms proposed will be considered taking into account the power of the LIDI network
computers. However, there does not exist such a simple solution for the case of
communications, since ScaLAPACK tends to assume that the two-dimensional processors
arrays behave as a static network with direct links, and this is not necessarily possible with
the organization of interconnection with three switches shown by Figure 5.8. All the same,
this will be employed at least as an idea of what may happen with a network of sixteen
computers, trying to identify the ScaLAPACK and the proposed algorithms' scalability
characteristics. Summing up, tests will be carried out in three networks ofhomogeneous
PCs: LIDI, LIDI-D and LIDI-16, interconnected with 100 Mb/S Ethernet switches.

Basic Software. In all the cases of local computing performed in each PC, it is completely
optimized. In the case of ScaLAPACK, there are several alternatives forthe data
communication routines (BLACS possible implementations): PVM and current MPI
implementations. In order to avoid ana priori comparison of which the best of them is,
PVM and MPICH have been used. The selected implementation of MPI is MPICH,since
in the documentation and installation of ScaLAPACK it tends to use this library as a
reference of MPI. In the case of the proposed algorithms for the multiplication and LU
factorization of matrices, the broadcast message explicitly implemented for the utilization
of Ethernet networks will be used. In consequence, there are two implementation
alternatives of ScaLAPACK: with PVM and with MPICH, and only one base software
alternative for the proposed algorithms.

Running Parameters. In the case of ScaLAPACK, the processor grids and the block sizes
should be defined. In the case of the 8-processor networks, grids of 8x1, 1x8, 2x4 and 4x2
processors have been defined. In the case of the 16-processor network, grids of 8x2, 2x8
and 4x4 processors have been defined. As regards the block sizes, the idea is to experiment
with small and large sizes of data blocks, plus some intermediate consideredas "classic"
within the context of ScaLAPACK. In consequence, the sizes with which the
experimentation was carried out were (always square blocks, square submatrices of the
matrices to be processed): 16, 32, 64, 126, 256, 512, and 1024 elements.

One last decision refers to the matrix sizes; in all of the cases the maximum sizes of
matrices were used, which depend on the total quantity of the computer memory and on the

151

 Switch
 Up

PIII
0

PIII
6

 Switch
 Up

 D
0

 D
6

 Switch
 Up

PIII
7
D

7

Chapter 5: Comparison with ScaLAPACK Parallel Computing in Local Area Networks

very problem. In the case of matrix multiplication, three matrices have to bestored and, in
the case of the LU factorization, only one. When the LIDI-16 network is used, it is
considered thatall the machines count with 64 MB of RAM. The specific sizes for each
problem and each computer network are shown in Table 5.2.

Cluster Matrix Multiplication LU Matrix Factorization

LIDI 5000 9000

LIDI-D 10000 20000

LIDI-16 8000 13000

Table 5.2: Sizes of Problems in each Local Network.

Summary of the Experiments. In the case of ScaLAPACK, we have for each problem
(multiplication and LU factorization of matrices) two sets of resultsin each PC network,
depending on the communication library: PVM and MPICH. In the case of the algorithms
proposed, there is only one possibility, since both the algorithm and the broadcast
communication routine are unique. Table 5.3 summarizes the experiments carriedout,
where:
• ScaMM denotes the matrix multiplication implemented in ScaLAPACK, more

specifically, in PBLAS
• PropMM is the algorithm proposed to multiply matrices with overlapped computing and

communications.
• ScaLU is the algorithm implemented by ScaLAPACK to make the LU factorization in

parallel.
• PropLU is the algorithm proposed to make the LU factorization of matrices in parallel.
• Bcast-UDP is the broadcast communication routine specifically optimized to take

advantage of the broadcast characteristics of Ethernet networks.

Comm. ScaMM PropMM ScaLU PropLU

PVM #blq, Grilla #blq, Grilla

MPICH #blq, Grilla #blq, Grilla

Bcast-UDP 1 #blq

Table 5.3: Experiments with ScaLAPACK and with the Proposed Algorithms.

The empty entries in Table 5.3 correspond to meaningless experiments or those which
could not be carried out:
• ScaLAPACK matrix multiplication and factorization cannot be immediately carried out

with the routine implemented to take advantage of the Ethernet networks broadcast
characteristics because ScaLAPACK needs the complete BLACS library,and not just a
single broadcast routine among processes.

• It has already been proven in the previous chapter that the performance obtained with
the matrix multiplication with the proposed algorithm and the PVM library isfar from
being acceptable. Thus, we have chosen to experiment with the proposed algorithms
discarding the PVM library and all the MPI implementations (including MPICH)which,

152

Parallel Computing in Local Area Networks Chapter 5: Comparison with ScaLAPACK

a priori, do not assure the optimized implementation of broadcast messages.

The entries in Table 5.3 containing "#blq" indicate that the performance depends at least on
the data block size we are working with. If, in addition, the entry has "Grid", itmeans that
it is necessary to define a two-dimensional array of the processors used. Thereis only one
entry in Table 5.3 which contains a "1" and this shows that there does not exist any
parameter to be defined for this alternative. In other words, the algorithm proposed to
multiply matrices does not depend on anything but on the computers to be used. In the next
subsections, the results are shown in function of ScaLAPACK and compared directly to the
results obtained by the proposed algorithms, since this entails the objective of thewhole
experimentation in this chapter.

5.3.2 Results: ScaLAPACK-PVM

ScaLAPACK installation over PVM is rather simple, and the different running
(parametrical) alternatives can be tested. The axisy of the following figures shows the
performance in terms of the Speedup obtained by each algorithm, and the axisx of the
same figure shows the algorithms and parameters used for its running. The results obtained
with ScaLAPACK are shown in the light bars, identifying each bar with thethree
parameters with which they were obtained: block size - quantity of grid processor rows,
and quantity of grid processor columns. The results obtained with the algorithms proposed
are shown in the dark bars and identified as "Prop".

Figure 5.9 shows the best five performance results with different combinations of
parameters with ScaLAPACK-PVM, and the performance of the algorithm proposed in
Chapter 3 (overlapped computing and communications) implemented with broadcast
messages optimized in LIDI network. The best result of the performance obtained with
ScaLAPACK-PVM in LIDI network (last bar in light gray from left to right of Figure 5.9,
identified with 32-4-2) corresponds to the running with data blocks of 32x32 elements and
the processor grid of 4x2. The proposed algorithm, with the optimized communications, is
identified as "Prop" and its corresponding bar in the figure is the darkest.

Figure 5.9: Matrix multiplication in LIDI, ScaLAPACK-PVM.

The best result in terms of Speedup obtained by ScaLAPACK-PVM is of slightlyless than

153

256-4-2 128-4-2 1000-4-2 64-4-2 32-4-2 Prop

0

1

2

3

4

5

6

7

8

Algorithm - Parameters

S
p

ee
du

p

Chapter 5: Comparison with ScaLAPACK Parallel Computing in Local Area Networks

5.8, and the performance obtained by the algorithm proposed is about 7.2; the percentage
improvement with respect to ScaLAPACK-PVM is of approximately 25%. That is, with
the same hardware, the proposed algorithm has almost a 25% better performance thanthat
of ScaLAPACK-PVM. The optimal speedup is 8.

Figure 5.10 shows the best five performance results with the different parameter
combinations with ScaLAPACK-PVM, and the performance of the algorithm proposedin
Chapter 3 (overlapped computing with communications) plus the broadcast messages
optimized in the LIDI-D network.

Figure 5.10: Matrix multiplication in LIDI-D, ScaLAPACK-PVM.

The best performance result obtained with ScaLAPACK-PVM in the LIDI network (last
gray bar from left to right of Figure 5.10, identified with 64-4-2) corresponds to the
running with data blocks of 64x64 elements and a 4x2 processor grid. The algorithm
proposed, with optimized communications, is shown and identified as "Prop" and its
corresponding bar is the darkest in the figure. The best performance results in terms of
Speedup obtained by ScaLAPACK-PVM is of slightly less than 5.6 and the performance
obtained by the proposed algorithm is of almost 7; the percentage improvement in relation
to ScaLAPACK-PVM is of slightly more than 25%.

The best result in terms of Speedup obtained by ScaLAPACK-PVM is of slightlyless than
5.6, and the performance obtained by the algorithm proposed is of almost 7; the percentage
improvement with respect to ScaLAPACK-PVM is of approximately 25%. That is, with
the same hardware, the proposed algorithm has almost a 25% better performance thanthat
of ScaLAPACK-PVM. The optimal speedup is 8.

Figure 5.11 shows the best five performance results with the different parameter
combinations with ScaLAPACK-PVM, and the performance of the algorithm proposedin
Chapter 3 (overlapped computing with communications) plus the broadcast messages
optimized in the LIDI-16 network.

The best performance result obtained with ScaLAPACK-PVM in LIDI-16 network (last
light gray bar from left to right, identified with 256-4-4) corresponds to the running with
256x256-element data blocks and the 4x4 processors grid. The proposed algorithm, with
the optimized communications, is shown and identified as "Prop", and its corresponding

154

64-8-1 32-8-1 256-4-2 32-4-2 64-4-2 Prop

0

1

2

3

4

5

6

7

Algorithm - Parameters

S
p

ee
du

p

Parallel Computing in Local Area Networks Chapter 5: Comparison with ScaLAPACK

bar is the darkest in the figure.

Figure 5.11: Matrix multiplication in LIDI-16, ScaLAPACK-PVM.

The best performance result in terms of Speedup obtained by ScaLAPACK-PVM isof
slightly more than 11 and the performance obtained with the proposed algorithm is of
almost 13.8; the percentage improvement with respect to ScaLAPACK-PVM is ofalmost
24%. That is, with the same hardware, the proposed algorithm has almost a 24% better
speedup than that of ScaLAPACK-PVM. The optimal speedup in this case is 16.

Since for LU factorization of matrices there are different block sizes for the proposed
algorithm, the results shown next have the following characteristics:
• The different block sizes are shown in each bar of the following figures, which

correspond to the proposed algorithm of LU factorization, identified now with "Prop-
block size".

• The best performance results for ScaLAPACK and for the proposed algorithm are
shown, with each figure showing three light gray bars and three dark gray bars.

Figure 5.12 shows the three best performance results with the different parameter
combinations with ScaLAPACK-PVM and the three best results performance results of the
algorithm proposed in this chapter (computing overlapped with communications, different
block sizes) implemented with broadcast messages optimized in LIDI network.

Figure 5.12: LU Matrix Factorization in LIDI, ScaLAPACK-PVM.

155

128-2-8 128-4-4 32-2-8 64-2-8 256-4-4 Prop

0

2.5

5

7.5

10

12.5

15

Algorithm - Parameters

S
p

ee
du

p

32-2-4 64-2-4 32-1-8 Prop-64 Prop-100 Prop-128

0

1

2

3

4

5

6

7

Algorithm - Parameters

S
p

ee
du

p

Chapter 5: Comparison with ScaLAPACK Parallel Computing in Local Area Networks

The best performance result obtained with ScaLAPACK-PVM in LIDI network(last light
gray bar from left to right of the figure, identified with 32-1-8) corresponds tothe running
with block sizes of 32x32 elements and the 1x8 processor grid. The best performanceof
the proposed algorithm corresponds to the block size 128 and is indicated as "Prop-128" in
the last bar from left to right of the figure.

The best performance result in terms of speedup obtained by ScaLAPACK-PVM isof
approximately 4.2 and the performance obtained with the proposed algorithm is of almost
6.4; the percentage improvement with respect to ScaLAPACK-PVM is of almost52%.
That is, with the same hardware, the proposed algorithm has an approximately 52%better
speedup than that of ScaLAPACK-PVM. The optimal speedup is 8.

In Figure 5.13, the results of the speedup obtained in LIDI-D network and LIDI-16 are
shown. In all the cases, the improvement with the proposed algorithm is among the 50%
and 60% in relation to the performance obtained by ScaLAPACK-PVM.

 a) LIDI-D b) LIDI-16

Figure 5.13: LU Factorization of Matrices in LIDI-D and LIDI-16, ScaLAPACK-PVM.

5.3.3 Results: ScaLAPACK-MPICH

ScaLAPACK installationover MPICH is also really simple, and so are the different
running alternatives (which are parametric). Since the format of the figures showing the
results obtained is the same, the results will be presented not as in detail as in the previous
cases. In all the cases, the performance obtained with the algorithms proposed in this thesis
is repeated in order to make a more immediate visual comparison. Figure 5.14 showsthe
results of the experiments in the two networks with eight PCs: LIDI and LIDI-D.

In the LIDI cluster, the algorithm proposed to multiply matrices has an almost 23% better
performance than the ScaLAPACK library (in terms of Speedup values) and in the LIDI-D
cluster it outperforms more than the 27%.

156

32-2-4 64-1-8 64-2-4 Prop-64 Prop-100 Prop-128

0

1

2

3

4

5

6

7

Algorithm - Parameters

S
pe

ed
up

64-4-4 64-2-8 32-2-8 Prop-100 Prop-32 Prop-64

0

2

4

6

8

10

12

14

Algorithm - Parameters

S
pe

ed
up

Parallel Computing in Local Area Networks Chapter 5: Comparison with ScaLAPACK

 a) LIDI b) LIDI-D

Figure 5.14: Matrix Multiplication in LIDI and LIDI-D, ScaLAPACK-MPICH.

In order to complete the data, the Figure 5.15 shows the results of the performance
obtained in the LIDI-16 network.

Figure 5.15: Matrix Multiplication in LIDI-16, ScaLAPACK-MPICH.

In this case, the algorithm proposed in this thesis to multiply matrices inclusters
outperforms the ScaLAPACK matrix multiplication in more than the 26%.

Summarizing, the results obtained by ScaLAPACK-MPICH are very similar to those
obtained with ScaLAPACK-PVM and, thus, the comparison of the performance results
with the proposed matrix multiplication algorithm is similar as well.

The situation rather changes when the LU factorization is considered for analysis. The
Figure 5.16 shows the speedup values obtained with ScaLAPACK-MPICH and repeats
those obtained with the algorithm proposed in this chapter for the two networks of eight
PCs.

157

256-4-2 128-4-2 1000-4-2 64-4-2 32-4-2 Prop

0

1

2

3

4

5

6

7

8

Algorithm - Parameters

S
pe

ed
up

32-8-1 256-4-2 128-4-2 32-4-2 64-4-2 Prop

0

1

2

3

4

5

6

7

Algorithm - Parameters

S
pe

ed
up

32-8-2 32-2-8 128-4-4 32-4-4 64-4-4 Prop

0

2.5

5

7.5

10

12.5

15

Algorithm - Parameters

S
pe

ed
up

Chapter 5: Comparison with ScaLAPACK Parallel Computing in Local Area Networks

 a) LIDI b) LIDI-D

Figure 5.16: LU Matrix Factorization in LIDI and LIDI-D, ScaLAPACK-MPICH.

Comparing the Speedup values of ScaLAPACK-MPICH appearing in Figure 5.16 with
those obtained with ScaLAPACK-PVM in Figure 5.12 and Figure 5.13-a), it is possible to
note that the ScaLAPACK library has a better performance of the LU factorization when
MPICH is in charge of the data transport. In fact, the proposed algorithm gainin relation to
ScaLAPACK-PVM ranges from 50% to 60%, but in relation to ScaLAPACK-MPICH
ranges from 30% to 32%. Two of the immediate conclusions from this information are:
• PVM has, in some cases, a strong communication performance penalization, which

becomes a penalization of the total performance.
• The proposed parallel algorithms have an “almost constant” gain in relation to the

algorithms implemented by ScaLAPACK. This gain, in percentage terms,is of
approximately 25% in the case of matrix multiplication, and 30% in the case of LU
matrix factorization. This is really interesting because they consist oftwo problems
which are parallelized using the same principles and the gain is higher for both, i.e.
parallelization principles for local networks are “proved” as the best, at least for these
two cases: multiplication and LU factorization of matrices.

Figure 5.17, apart from completing the data of the matrix factorization in parallel for the
16-PCs network, adds valuable information in relation to ScaLAPACK performance when
the network is not completely “switched”, as in the case of this particular network.

 Figure 5.17: LU Matrix Factorization in LIDI-16, ScaLAPACK-MPICH.

158

32-1-8 64-2-4 32-2-4 Prop-64 Prop-100 Prop-128

0

1

2

3

4

5

6

7

Algorithm - Parameters

S
pe

ed
up

64-1-8 64-2-4 128-2-4 Prop-64 Prop-100 Prop-128

0

1

2

3

4

5

6

7

Algorithm - Parameters

S
pe

ed
up

128-2-8 128-4-4 64-4-4 UDP-100 UDP-32 UDP-64

0

2

4

6

8

10

12

14

Algorithm - Parameters

S
p

ee
du

p

Parallel Computing in Local Area Networks Chapter 5: Comparison with ScaLAPACK

As it can be noticed, the performance of ScaLAPACK-MPICH is quite similarto that of
ScaLAPACK-PVM (and, thus, the difference with the matrix factorization algorithm
proposed in this chapter is again quite big). There are at least two reasons for which
ScaLAPACK-MPICH “gets worse”:
• ScaLAPACK matrix factorization algorithm is not scalable and, thus, whenmore

computers are used, the performance gets worse.
• The completely “switched” network generates an extra performance penalization not

included in the completely “switched” networks and, consequently, the total parallel
performance remarkably gets worse.

In this point, it should be taken into account that the Speedup obtained in the two
interconnected networks with a single switch is of approximately 63% of the optimum,
while the obtained by the LIDI-16 network (which does not have a single switch, but three
“cascade” switches) is of approximately 50% of the optimum. In consequence, since
• the performance of ScaLAPACK is highly influenced by the communication

performance,
• the relative performance obtained in the two networks interconnected by a singleswitch

is quite higher than that obtained in a network which does not count with that
interconnection characteristic,

ScaLAPACK’s lack of scalability can be discarded, at least in principle.

5.3.4 ScaLAPACK-MPICH and Scalability

This last subsection shows the results obtained in most of the clusters over whichthe
experimentation could be carried out in order to compare the algorithms proposed in this
thesis with those implemented in ScaLAPACK to carry out the same task. This cluster is
composed by 20 PCs interconnected by a single 100 Mb/s Ethernet switch, i.e. there exists
a complete switching with the 20 machines interconnected by the 100 Mb/s Ethernet.Table
5.4 briefly shows the PCs characteristics of the cluster, which shall be called from now on
CI-20, together with its computing capacity expressed in Mflop/s terms.

Processors Clock Freq. Memory Mflop/s

Intel P4 2.4 GHz 1 GB 5000

Table 5.4: Characteristics of the Computers of the Cluster CI-20.

On the other hand, Table 5.5 shows the matrix sizes used in the problems of multiplication
and LU factorization, respectively.

Multiplicación de Matrices Factorización LU de Matrices

38000 65000

Table 5.5: Sizes of Problems in Cluster CI-20.

159

Chapter 5: Comparison with ScaLAPACK Parallel Computing in Local Area Networks

Since the ScaLAPACK library obtains its best performance results when usingthe MPICH
message passing library, all the experiments carried out with ScaLAPACK makes use of
MPICH for message passing. In a certain way, the experiments presented next have two
characteristics that differentiate them from the previous:
1. They use the greatest quantity of machines and, in a certain way, show quite limitedly

(up to 20 computers) the proposed algorithms scalability.
2. They use the computers with highest computing power, keeping the interconnection

network in 100 Mb/s, with which we have the worst relation between the performance
of local computing and that of the communications.

Since there are 20 computers, and ScaLAPACK recommendations for obtaining optimized
performance is to keep the grid PxQ with P as similar as possible to Q [21],the grids used
in the experiments were of 4x5 and 5x4 processors.

Figure 5.18 shows the performance values obtained with ScaLAPACK-MPICH and with
the algorithm proposed in this thesis (computing overlapped with communications) forthe
multiplication of 38000x38000 element matrices. The best value obtained by ScaLAPACK
-MPICH is obtained with 32-block size and with the machines interconnected asin a 5x4
processor grid. The absolute Speedup value obtained by ScaLAPACK-MPICH is, in this
case, of approximately 10. In the case of the algorithm proposed, we obtain a Speedup of
slightly more than 16, which represents an improvement of approximately a 62% with
respect to ScaLAPACK-MPICH. In this case, the optimum Speedup value is 20, the
number of computers used.

Figure 5.18: Matrix Multiplication in CI-20, ScaLAPACK-MPICH.

Figure 5.19 shows the performance values obtained with ScaLAPACK-MPICH and with
the algorithm proposed in this thesis (computing overlapped with communications) forthe
LU factorization of 65000x65000 element matrices. The best value obtained by
ScaLAPACK-MPICH is obtained with 64-block size and with the machines interconnected
as in a 4x5 processor grid. The absolute Speedup value obtained by ScaLAPACK-MPICH
is, in this case, slightly more than 10. In the case of the algorithm proposed, theobtained
Speedup is of more than 18, which represents an improvement of approximately an 80%
with respect to ScaLAPACK-MPICH. Also in this case, the optimum Speedup value is 20,
the number of computers used.

160

32-4-5 64-5-4 64-4-5 128-5-4 32-5-4 Prop

0

2

4

6

8

10

12

14

16

18

Algorithm - Parameters

S
p

ee
d

up

Parallel Computing in Local Area Networks Chapter 5: Comparison with ScaLAPACK

Figure 5.19: Matrix LU Factorization in CI-20, ScaLAPACK-MPICH.

It is very interesting to notice that, beyond the comparison with ScaLAPACK, the obtained
Speedup is really close to the absolute maximum. In the case of matrices multiplication,
almost the 82% of the optimum performance is obtained, and in the case of the LU
factorization almost the 93% of the optimum is obtained, which is really satisfactory,
taking into account that, for instance, there is an interconnection network of only 100Mb/s
and with high latency.

5.4 Summary of the Comparison with ScaLAPACK

Table 5.6 briefly shows the comparison of the performance obtained by the algorithms
proposed in this thesis with those implemented by/in ScaLAPACK. For each ofthe clusters
used (LIDI, LIDI-D, LIDI-16, and Cl-20)
• ScaLAPACK’s performance in terms of Speedup (Sca column)
• The proposed algorithms’ performance in terms of Speedup (Prop column)
• The percentage of the improvement in Speedup obtained with the use of the algorithms

proposed in this thesis (%Prop column).

LIDI
8 PIII - 100 Mb/s

LIDI-D
8 D - 100 Mb/s

LIDI-16
16 PCs - 100 Mb/s*

Cl-20
20 PCs - 100 Mb/s

Sca Prop %Prop Sca Prop %Prop Sca Prop %Prop Sca Prop %Prop

MM 5.84 7.18 +23% 5.48 6.98 +27% 10.87 13.72 +26% 10.08 16.35 +62%

LU 4.93 6.38 +30% 4.97 6.59 +33% 8.2 12.35 +51% 10.28 18.56 +81%

*The only Ethernet network with cascade switches combination; the remaining has complete switching.

Table 5.6: Summary of the Comparison with ScaLAPACK.

Even though the gain in terms of Speedup is noteworthy, it is even more important thefact
that in clusters with more computers and with a worse performance relationbetween local
computing and communications, the gain tends to be higher. Even more, independently of
the comparison with ScaLAPACK, Table 5.7 shows the absolute Speedup values obtained

161

128-4-5 100-4-5 64-4-5 Prop-64 Prop-100 Prop-128

0

2

4

6

8

10

12

14

16

18

20

Algorithm - Parameters

S
p

ee
du

p

Chapter 5: Comparison with ScaLAPACK Parallel Computing in Local Area Networks

by the algorithms proposed in this thesis (columnProp) together with the optimal
percentage that those values represent (column %Op).

LIDI
8 PIII - 100 Mb/s

LIDI-D
8 D - 100 Mb/s

LIDI-16
16 PCs - 100 Mb/s*

Cl-20
20 PCs - 100 Mb/s

Prop %Op Prop %Op Prop %Op Prop %Op

MM 7.18 90% 6.98 87% 13.72 86% 16.35 82%

LU 6.38 80% 6.59 82% 12.35 77% 18.56 93%

*The only Ethernet network with cascade switches combination; the remaining has complete switching.

Table 5.7: Relation of the Proposed Algorithms with the Absolute Optimum.

All the values, except for LU factorization in LICI-16, outperforms the 80 % of the
absolute optimum, which is highly satisfactory, and even more when recallingthat a really
low-cost interconnection network, which does not depend on the use of switches for
interconnection, is being used. Even when the exception of LU in LIDI-16 could be usedas
an indicator that the algorithm is not scalable enough, this assumption could be discarded
basing on the values obtained for more quantity of computers and of higher CI-20 cluster
computing power.

162

