Chapter 5: Comparison with ScaLAPACK

This chapter presents two important aspects as regards the validity andtheecoftributions of
this thesis: 1) Application of parallelization principles in homogeneous envieatsrdedicated to
parallel computing for two specific cases: matrix multiplication andrind.U factorization; and
2) Comparison of the results obtained by experimentation in terms of the ScaCKPRisrary
performance. This library is specifically dedicated to homogeneous daraligputing platforms
with distributed memory, and is generally accepted as that implemethiinigest existing parallel
algorithms in terms of accessibility and performance optimization.

The use of the ScaLAPACK library is, until now, oriented only to homogeneous hardwale
thus, the homogeneous network which we have worked with is initially taken antmunt.
However, for this comparison, we have had the possibility of counting with a seconajeoous
network, which is also described (at least, the necessary) in thiseshépa certain way, several
characteristics of the experimentation change in this chapter for twoongasl) The
experimentation is classic and simple as regards tests. For instaece,i$ no analysis of the
problem sizes off the limits of each machine's memory since what we aragaanis the direct
comparison of the algorithms; 2) We only take into account homogeneous computer networks
since otherwise comparison with the algorithms implemented in ScaLAPAIT not be possible

or would be "biased".

This chapter also adds the problem of matrix LU factorization, to which thes sgarallelization
concepts as those of matrix multiplication are applied. In this case, thetiobjéas not been the
exhaustive examination of algorithms, implementations, etc. - as in the o&smatrix
multiplication-, but the direct application of parallelization principlesghis specific problem. For
this reason, the description of the problem in itself and of parallel algorittwiisnot be
exhaustive.

Chapter 5: Comparison with ScaLAPACK Parallel Computing in Local Area Networks

5.1 ScaLAPACK General Characteristics

It is really interesting to highlight that algorithm analysis and aldponi proposals for
solving parallel linear algebra problems are closely related to thetitadi parallel
machines (such as those belonging to the "Ad Hoc" and "Commercial" paraftgduder
types of Chapter 1, Figure 1.2). In consequence, the analysis carried out for ¢hefcas
matrix multiplication is applicable to the rest of the operations includedcal BPACK
and/or used to solve them.

From the point of view of ScaLAPACK implementation, we can identify severaivsoé
"layers" [21], which are shown in Figure 5.1 from the point of view of the softwarke
used in each computer.

ScaLAPACK

Figure 5.1: A Layered Vision of ScaLAPACK.

As anintegrating part of ScaLAPACK, we make special emphasis on the basic operations
(like in the LAPACK context), which are called PBLAS (Parallel Rakinear Algebra
Subroutines). All what is related to local computing in terms of calculat@ngperations

of matrix computing remains directly related to BLAS (Basic Lineagefra Subroutines),

and, in this way, we take advantage of all the efforts and developments of sexarslof
research. On the other hand, we should take into account the need of communication
among parallel computer processes, in general, and distributed memotglpamaiputers,

in particular, and we thus add BLACS (Basic Linear Algebra Communication
Subroutines).

The addition of BLACS is interesting from two points of view:

- As previously mentioned, we are aware of the need of communicating among processes
in a distributed memory environment. In this sense, we tend to discard théifitysef
shared memory (let be it physically distributed or not), and we tend to adopt the
message-passing programming model of distributed parallel architectinedecision
is, in turn, directly related to the obtaining the optimized performanceeimg of
computing and communications.

None of the available message passing libraries is directly used: nor those afse
(PVM, and MPI implementations) or those provided by commercial companies of
parallel computers which are specifically optimized for their interconoemetworks
(IBM, for instance, for their SP machines). In fact, there exist frse-BLACS
implementations which make direct use of PVM or MPICH (one of MPI
implementations).

142

Parallel Computing in Local Area Networks Chapter 5: Comparison with ScaLAPACK

Parallel algorithms implemented in ScalLAPACK are strongly influends/ those
proposed in the area of multicomputers with processor bi-dimensional intercamecti
organization or with even more complex interconnection networks, such as those of
hypercube topology [2] [3] [21]. This decision is oriented to using and taking advantage of
all the investigations and results obtained to the present. However, this tygbgoothms
tends to count with a high performance penalization in the cluster contexg wiith
clusters based on Ethernet interconnection networks and with general purposingpera
systems (Linux, AIX, IRIX, Solaris, etc.), the cost-communicatioratiehs is several
orders of magnitude worse (for parallel application performance) than intitnaali
multicomputers. The most important reason for this to happen is that neithemé&ther
networks nor the traditional operating systems are thought for parallel compulikey, a
multicomputers, which are built for parallel computing.

Consequently, it is easy to understand why clusters, over which librarieS¢&keAPACK
are used and where parallel computing tasks are generally solved, aretgdsto the
completely "switched" wiring. With this type of wiring it is possible torgaout multiple
point-to-point communications, and this makes the hardware similar to that of
multicomputers. However, we shall see that the cost of completely "switaietaV/orks
increases much more than linearly in function of the quantity of interconnected computers

5.2 LU Factorization Parallelization

The matrix factorization method called LU is widely known and accepted, indéérms of

its use and its numerical stability properties (specifically, when pigptis, at least,
partially used), as computing and storage requirementsinitia definition of the method
is oriented to the solution of equation systems, and is directly based on svkiabwn as
Gaussian elimination [27]. Initially, the block LU factorization sequanalgorithm is

described, and then the proposed parallel algorithm for computer clusters entecks
following the same principles used in matrix multiplications.

5.2.1 Block LU Factorization Sequential Algorithm

Given a square matrix A of ordeytwo matrices usually called L and U, also square and of
ordern, are searched for such that

A=LxU (5.1)

where L is lower triangular and U is upper triangular.

If A is not singular, it can be proved that L and U exist [59]. The LU factor@atnethod
does nothing but successively apply Gaussian elimination steps so that thatslenk
and U matrices are computed iteratively [84]. Generally, and with thectge of

143

Chapter 5: Comparison with ScaLAPACK Parallel Computing in Local Area Networks

stabilizing the calculations from the numerical point of view (to basicallynitetie error),
the partial pivoting technique is incorporated within the LU method.

From the point of view of memory requirements, no requirement other than the storage of
matrix A being factorized is added, and thus is kept irOgmé). From the point of view of
computing requirements, the number of floating point operations needed for LU computing
is O(n?). In this way, we get to the same basic relation as that obtained for 3eB&AS
operations, i.e. the number of floating point operation€{s®) with O(n?) data being
processed.

With the objective of taking advantage of the underlying computing architecture inahos
the computers, and specifically of the memory hierarchy with the inclusiort tHaat a
cache memory level, most of the linear algebra operations have been defineohsnate
data blocks (or submatrices). Specifically within the context of the LU methqdrtition
of matrix A is determined taking as basis a block or submatrix of &, &f bxb data, such
as Figure 5.2 shows.

00 01

10 11

Figure 5.2: Division of a Matrix in Blocks.

The LU factorization of A is sought, which expressed in function of the previouskbloc
division will be such that

A A LO 0 00| U

00 01 00 0 01

10 11 10 L o

11

Figure 5.3: LU Factorization in Terms of Blocks.

where the following equations should be fulfilled, taking into account the submabfces
A, Aoco, Ao, Ao, and A, the submatrices of L different from zero,oolL1o y L11, @and the
submatrices of U also different from zerg,Wo: y U1

Ao = Loo Uno (5.2)
Ao1 = Loo Un (5.3)
A= Lo Uno (5.4)
A1 = LioUo + Lis Uny (5.5)

144

Parallel Computing in Local Area Networks Chapter 5: Comparison with ScaLAPACK

and matrices |Lare lower triangulars andd0< 1, j, k, | < 1) are upper triangular.

If LU factorization is directly (in theclasical way) applied to the block & of A, the
triangular matrices 4, and Uy are obtained such that Eq. (5.2) is directly verified (due to
the application of LU factorization method). Using Equation (5.3)xUs = Aoi, and as

Lo is lower triangular, thus the triangular equation system solution methodnauthiple
results (multiple right hand sides) can be directly applied in order to oletah of the
columns of U;. Likewise, or similarly, Eq. (5.4) is used to obtaimLsince LoxUq = A1o

and, in this case, §Jis upper triangular and the triangular equation system solution method
with multiple results (multiple right hand sides) can be also directly used.

It would only remain the computing of ;L. and U; in order to obtain the whole
factorization of matrix A. In this case, by Eq. (5.5)%U11 = Aqr - LioXUoy, i.e. finding
matrices L; and U, implies applying the same LU method by blocks to the (sub)matrix
resulting from A; - LioxUoi. What has remained explicitly unsaid is the necessary
processing related to the partial pivoting, which basically impliesctelg the pivot and
exchanging the corresponding rows or columns.

With the previously explained method by blocks, all the operations can be defineia t
of submatrices of the original matrix A, and, also, two processing chaistatsrthat can
be successfully used in terms of code optimization are defined:

1. Most of the floating point operations are run to solve matrix-A.;0xUo; update, which
is basically a matrix multiplication.

2. All the LU factorization method can be solved using two BLAS-defined roatimdich
are that of triangular equation system resolution and matrix multipheati trsm and
_gemm, respectively in terms of BLAS C interface) and that of LAPACKe{rfgin
terms of LAPACK C interface).

5.2.2 LU Factorization Parallel Algorithm for Multicomputers

The previously described method for LU factorization is almost directly @amgnted in
sequential computers, though it has some performance drawbacks in distributeatymem
parallel computers. Data distribution has a decisive relevance in termsfofrpance from
two points of view: a) load balance, and b) scalability.

It is relatively easy to identify that, as the algorithm iterations adearice left upper
corner of the matrix is computed, and this computed part is each time (eaahoig
greater. This directly implies that these data do not need to be updated anibtheyen

take part in the following computations. Taking into account that data are distfilbute
different computers, all the computers which have these data assigned toiwikbe them
again neither for updating them nor computing others in function of them. In order to avoid
the load unbalance produced as the iterations advance, libraries such as SCH{ ARA
PLAPACK use the distribution called two-dimensional block cyclic decomposisuch is
mentioned in [26] [21] [45] and detailed at the end of Chapter 3. The main ideas on which
this data distribution is based are:

145

Chapter 5: Comparison with ScaLAPACK Parallel Computing in Local Area Networks

Having much more data blocks than processors, and in this way, the distributios make
the same processor have blocks updated almost in every iteration. In conseguence, al
the processors tend to have blocks which are updated in every iteration andlthey al
process in all the iterations.

- It is assumed that two-dimensional distributions are scalable enough atdedisear
algebra applications.

- The experimental work is generally carried out in multicomputers or in honemes
clusters with completely "switched" and high performance (in a \wdyjoc for parallel
processing) interconnection networks.

In consequence, the parallel algorithm used for LU factorization is dyréetbed on the
description given for the LU computation in function of blocks, but with two-dimensiona
and block-cyclic distribution of the matrix data.

5.2.3 LU Factorization Parallel Algorithm for Clusters

The guidelines for matrix LU factorization parallelization are bdsidhe same as those

used for matrix multiplication:

- Message-passing programming model: processes locally computed and contealnica
through messages with the remaining.
SPMD (Single Program, Multiple Data) computing model: a same program runeby e
computer using different data.
One-dimensional data: the complete matrix is divided by rows or columns (not in both
ways, all of which would lead to two-dimensional distributions).
Communication among processes only for broadcast messages: most of the data
transferences among processes (or all of them) are carried out via broadsaages in
order to use to the maximum the characteristics of the Ethernet networkaria t#
transference data rates and scalability.

Data Distribution. Since all communications tend to be of broadcast typee-
dimensional data distributions are favored over the two-dimensional or those which take
into account the interconnection in hypercubes, for instance. The communicatiortgor da
transfer) among computers that is prone to be used is the very definition of then&ther
standard as regards the computers' logic interconnection with the only buss kkettse,
data distribution is one-dimensional, though computers interconnection is not thahgf a r
which is considered dgpical in the context of one-dimensional process organization [82].

Once data distribution is restricted to the one-dimensional ones, there arevordymilar
alternatives: by rows or by columns. Even though the initial proposal can be the digfsion
the complete matrix in as many parts as available processors (computersinplies a
direct loss of processing load balance. If, for instance, there are four poosess, ws;,

ws;, and ws, and the matrix is divided in four row blocks, such as Figure 5.4 shows, when
the rows assigned to processorovese all processed, processor,ws longer has a
processing task. This means that, from this moment on, all the matrix fatiorizask is
carried out without the computing power of swvSomething similar happens when the rows
assigned to wsare then processed, from which all subsequent processing is carried out
only in processors wsand ws, and this clearly implies that the processing is not balanced

146

Parallel Computing in Local Area Networks Chapter 5: Comparison with ScaLAPACK

among the four processors.

WS
W$§
WS
WS

Figure 5.4: Partition and Designation of a Matrix by Row Blocks.

In this moment, the idea of processing by blocks is directly used, as well as talsd-
block-cyclic distribution. A block size relatively small in relation teettotal size of the
matrix is established, and the distribution is carried out by blocks of this ctsizsenin the

case of one-dimensional distributions, this block size is the number of rows or columns
distributed as a unit. If, for instance, there are eight blocks and four procets®isdock-
cyclic distribution is carried out as Figure 5.5 shows, where blaslassigned to processor

i modP, whereP is the total number of computers.

WS WS WS WS | WS WS WS, WS

Figure 5.5: Block-Cyclic Column Distribution.

The greater is the number of blocks, the greater will also be the resultingblladce.

Since, normally, the number of rows and columns of the matrices to be processedhs m
greater than the number of computers, the load balance implemented in this vgayatoe
present any inconveniences. On the one hand, data distribution is simple, and with very few
parameters to be defined (only the block size) and, on the other, the load balaessangc

to obtain acceptable performance in the LU factorization processing is obtained.

Processing. Like most of the numerical applications belonging to the area of linear algebra,
the processing model is SPMD; all the computers in the cluster run the samarpragn

initial proposal, with computing and communication periods run sequentially im @ate
computers of the cluster, is shown in Figure 5.6 in pseudo-code for machineitivs
0<i<P-1 [127]. As shown in the pseudo-code, all communications are of broadcast type
and, thus, if this type of data transfer is optimized among processes of a pagpalieation
(using the Ethernet network physical broadcast facility, for instance);aimelete parallel
processing is optimized almost directly for the LU factorization.

147

Chapter 5: Comparison with ScaLAPACK Parallel Computing in Local Area Networks

=

for (j = 0; j < nblocks; j++)
if (i == (j mod P)) [* Current block is local */
{

Factorize block |
broadcast_send (factorized block j and pivots)

}
else
broadcast_receive (factorized block j and pivots)
Apply pivots I* *A
Update L [* Update local blocks ¥/
Update trailing matrix * *
}

Figure 5.6: Pseudo-code of a Parallel Algorithm for LU Factorization.

It should be noticed in the pseudo-code of Figure 5.6 that everything related to thengandli
of pivots is explicitly incorporated because now the matrix is distributed amagepsors

and, thus, the interchanges produced by pivots should be explicitly distributed from the
computer factorizing a block. On the other hand, assuming, for example, that the isat
divided in row blocks, when a row block is factorized, the blocks which in Figure 5.2
appear as d, Uo and W, are already computed, and consequently, what remains to be
computed are the blocks corresponding te (L in the Figure 5.6) and to A-Li0xUo:
("trailing matrix" in Figure 5.6).

As in the case of matrix multiplication, the pseudo-code of Figure 5.6 imposes aveéry
defined and strict sequence of steps of local computing and communications wigsthe r
of the processes/processors. Also, as in the case of matrix multiplicéti®rcomputing

can be organized so as to carry out communications overlapped with local computing
(whenever possible) and, in this way, attempt to reduce the performance peoaliza
imposed by communications in the clusters. This proposal is shown in Figure 5.7 in
pseudo-code.

The algorithm of Figure 5.7 adds the idea of the "next block" to the classical tgoaf
Figure 5.6. Since LU factorization of a block and its corresponding send_broadcast_b
communication operation impose a waiting time to all the remaining procesberasext

block is factorized and sent "in background” so that it is available in the texdtion in

order to update the rest of the matrix.

148

Parallel Computing in Local Area Networks Chapter 5: Comparison with ScaLAPACK

if (i ==0) v]
Factorize and broadcast_send block 0

for (j = 0; j < nblocks; j++)

{
if (i == (j mod P)) /* Current block is local */

Update local blocks

else if (i == ((j+1) mod P)) /* Next block is local *
{

broadcast_recv_b (factorized block j)

Update and Factorize block j+1
broadcast_send_b (factorized block j+1)
Update local blocks (block j+1 already updated

else /*ws does not hold block j nor block j+1 */
{

broadcast_recv_b (factorized block j)
Update local blocks (block j+1 already updated

}
}

Figure 5.7: Parallel LU Factorization with Overlapped Computing and Communication.

5.3 Experimentation

Initially, we should define the parameters with which the experiment® warried out;
more specifically, in the case of the ScaLAPACK it is necessary to define:
Communication Supporting Library (PVM, MPI implementation, etc.).
Processors grid (two-dimensional processors array).
Block Size.

Since ScalLAPACK is used in homogeneous environments, it is no longer necessary t
make reference to the relative computing power of processors for the load bdlance.
addition, the speedup can be used directly as the performance index in order toetmepar
parallel algorithms implemented in ScaLAPACK with others, such asetippeposed in

this chapter and in chapter 3.

In order to avoid confusions, and since the comparison made in this chapter tends to
quantify the differences between the algorithms implemented in ScaLAPwith those
proposed in this chapter and in chapter 3, the algorithms used are those tendinghte use
overlapped communication and computing facility among computers. In this wag,ithe
single proposed algorithm for solving each of the tasks to be carried out ingbanaditrix
multiplication and matrix LU factorization.

149

Chapter 5: Comparison with ScaLAPACK Parallel Computing in Local Area Networks

5.3.1 Set of Experiments

Hardware. The first homogeneous network that will be used is the only one that has been
used under these conditions: the LIDI local network. However, there has been swcess
another local network that could be used and interconnected to the LIDI local tkesor
well. This second network is made up of 8 PCs with Duron processors with higher
computing and storing capacity than LIDI's PCs, with 10/100 MB/s Ethernetaonketw
interconnection cards. In addition, since we could use other two Ethernet ssvitabart

from that of the LIDI local network) of 8 ports 100 MB/s, experiments can be eduout

with two more "parallel machines": one with the eight PCs with Duron psmss
completely interconnected by a switch, and the other with a combination of the two
networks with three switches. Finally, in the last of these experimentaections, the
results obtained in the last of the homogeneous clusters will be shown, in which
experiments more specifically oriented to comparing the performance oflgbatims
proposed in this thesis and those implemented by ScaLAPACK were carried out.

The network with the eight PCs with Duron processors and a single switclel{iwhil be
called hereinafter LIDI-D), is a classical homogeneous cluster, fikesery LIDI network,
though it has an important difference with the LIDI network: the computing-
communication ratio. Since computers of the LIDI-D network have a higher computthg a
storing power and the same interconnection network as those of the LIDI network, the
difference in the computing-communication relation between them can be daedriiif
using directly the computing power differences among PCs. Table 5.1 briefly sihews t
characteristics of the PCs of the LIDI-D cluster, together with themputing capacity
expressed in terms of Mflop/s.

Processors Clock Freq. Memory Mflop/s
AMD Duron 850 MHz 256 MB 1200

Table 5.1: Characteristics of the Computers of the LIDI-D Cluster.

Since PCs of the LIDI-D have a performance of approximately of 1200 Mflop/s, Blight
more than the double of LIDI network computers, it can be asserted that the computing
communication ratio of the LIDI-D network is approximately two times veoisr parallel
computing than that of the LIDI network. In other words, at the same time interval:
LIDI-D computers can perform the double of the computations than those of the LIDI
network..
LIDI-D computers can transmit the same amount of data than those of the LIDI
network..
The amount of RAM installed in the computers of the LIDI-D network is of 256 MBhwit
which bigger than those tested in the LIDI network can be tested.

In the case of the combination of both networks with three switches of eight poets, t
situation is not so common for two reasons: a) there does not exist homogendity in t
sixteen PCs; b) there is not complete "switching" capacity, i.e. it is ndiplesto combine

all the simultaneous communications of both PCs at the same time. Figure 5.8 shows how
to interconnect the sixteen PCs (Rlll.., Plll; of the LIDI network, and [, ..., D; of the

150

Parallel Computing in Local Area Networks Chapter 5: Comparison with ScaLAPACK

LIDI-D network) with three switches of eight ports, where we can cleabdyerve how the
complete "switching" capacity is lost among the eighteen PCs. From now onptails
network with sixteen PCs will be called LIDI-16.

Up
—) E—
Up Switch Up
Switch Switch
| | | |
PIll, — Pl Pl D, D, — D,

Figure 5.8: LIDI and LIDI-D Networks Interconnected with Three Switches.

In the LIDI-16 network, and from the performance point of view, it will be taken into
account that all the computers have the computing power of the LIDI network's computers,
l.e. they are considered as homogeneous. The ScaLAPACK performance and that of the
algorithms proposed will be considered taking into account the power of the LIDI networ
computers. However, there does not exist such a simple solution for the case of
communications, since ScaLAPACK tends to assume that the two-dimensionatgoisce
arrays behave as a static network with direct links, and this is not netegsesible with

the organization of interconnection with three switches shown by Figure 5.8hé\Bame,

this will be employed at least as an idea of what may happen with a networktegsi
computers, trying to identify the ScaLAPACK and the proposed algorithm#alstey
characteristics. Summing up, tests will be carried out in three networksrobgeneous

PCs: LIDI, LIDI-D and LIDI-16, interconnected with 100 Mb/S Ethernet switches.

Basic Software. In all the cases of local computing performed in each PC, it is completely
optimized. In the case of ScalLAPACK, there are several alternativesthiordata
communication routines (BLACS possible implementations): PVM and current MPI
implementations. In order to avoid anpriori comparison of which the best of them is,
PVM and MPICH have been used. The selected implementation of MPI is MFiQEER

in the documentation and installation of ScaLAPACK it tends to use this Vibaara
reference of MPI. In the case of the proposed algorithms for the multiplication and LU
factorization of matrices, the broadcast message explicitly impieedefor the utilization

of Ethernet networks will be used. In consequence, there are two implementation
alternatives of ScaLAPACK: with PVM and with MPICH, and only one basevsark
alternative for the proposed algorithms.

Running Parameters. In the case of ScaLAPACK, the processor grids and the block sizes
should be defined. In the case of the 8-processor networks, grids of 8x1, 1x8, 2x4 and 4x2
processors have been defined. In the case of the 16-processor network, grids of 8x2, 2x8
and 4x4 processors have been defined. As regards the block sizes, the ideevritment

with small and large sizes of data blocks, plus some intermediate cons@erethssic”

within the context of ScalLAPACK. In consequence, the sizes with which the
experimentation was carried out were (always square blocks, square sabmatrthe
matrices to be processed): 16, 32, 64, 126, 256, 512, and 1024 elements.

One last decision refers to the matrix sizes; in all of the cases themmue sizes of
matrices were used, which depend on the total quantity of the computer memory dred on t

151

Chapter 5: Comparison with ScaLAPACK Parallel Computing in Local Area Networks

very problem. In the case of matrix multiplication, three matrices have &idred and, in

the case of the LU factorization, only one. When the LIDI-16 network is used, it is
considered thaall the machines count with 64 MB of RAM. The specific sizes for each
problem and each computer network are shown in Table 5.2.

Cluster Matrix Multiplication LU Matrix Factorization
LIDI 5000 9000

LIDI-D 10000 20000

LIDI-16 8000 13000

Table 5.2: Sizes of Problems in each Local Network.

Summary of the Experiments. In the case of ScaLAPACK, we have for each proble
(multiplication and LU factorization of matrices) two sets of resuiteach PC network,
depending on the communication library: PVM and MPICH. In the case of the dguit
proposed, there is only one possibility, since both the algorithm and the broadcast
communication routine are unique. Table 5.3 summarizes the experiments aautjed
where:

ScaMM denotes the matrix multiplication implemented in ScalLAPACK, emor

specifically, in PBLAS

PropMM is the algorithm proposed to multiply matrices with overlapped computidg a

communications.

ScalU is the algorithm implemented by ScaLAPACK to make the LU facation in

parallel.

PropLU is the algorithm proposed to make the LU factorization of matrices ingbarall

Bcast-UDP is the broadcast communication routine specifically optimipethke

advantage of the broadcast characteristics of Ethernet networks.

Comm. ScaMM PropMM ScalL U PropLU
PVM #blg, Grilla #blg, Grilla
MPICH #blq, Grilla #blq, Grilla

Bcast-UDP 1 #blg

Table 5.3: Experiments with ScaLAPACK and with the Proposed Algorithms.

The empty entries in Table 5.3 correspond to meaningless experiments or thase whi
could not be carried out:
- ScalLAPACK matrix multiplication and factorization cannot be immedyatarried out
with the routine implemented to take advantage of the Ethernet networks broadcast
characteristics because ScaLAPACK needs the complete BLACS lilaraalynot just a
single broadcast routine among processes.
It has already been proven in the previous chapter that the performance obtained with
the matrix multiplication with the proposed algorithm and the PVM librarfaisfrom
being acceptable. Thus, we have chosen to experiment with the proposed algorithms
discarding the PVM library and all the MPI implementations (including MPI1@H)ch,

152

Parallel Computing in Local Area Networks Chapter 5: Comparison with ScaLAPACK

a priori, do not assure the optimized implementation of broadcast messages.

The entries in Table 5.3 containing "#blq" indicate that the performance dependstairiea

the data block size we are working with. If, in addition, the entry has "Gridhaans that

it is necessary to define a two-dimensional array of the processors used.iS batg one

entry in Table 5.3 which contains a "1" and this shows that there does not exist any
parameter to be defined for this alternative. In other words, the algorithm Edpos
multiply matrices does not depend on anything but on the computers to be used. In the next
subsections, the results are shown in function of ScaLAPACK and comparetlydioetthe

results obtained by the proposed algorithms, since this entails the objective whtie
experimentation in this chapter.

5.3.2 Resaults: ScaL APACK-PVM

ScalLAPACK installation over PVM is rather simple, and the different running
(parametrical) alternatives can be tested. The sxaf the following figures shows the
performance in terms of the Speedup obtained by each algorithm, and the aikihe
same figure shows the algorithms and parameters used for its running. Tte oégained
with ScaLAPACK are shown in the light bars, identifying each bar with theee
parameters with which they were obtained: block size - quantity of grid psocesws,
and quantity of grid processor columns. The results obtained with the algoritlupssad
are shown in the dark bars and identified as "Prop".

Figure 5.9 shows the best five performance results with different combinations of
parameters with ScaLAPACK-PVM, and the performance of the algorithm pedpws
Chapter 3 (overlapped computing and communications) implemented with broadcast
messages optimized in LIDI network. The best result of the performance atbtaiitie
ScalLAPACK-PVM in LIDI network (last bar in light gray from left taght of Figure 5.9,
identified with 32-4-2) corresponds to the running with data blocks of 32x32 elements and
the processor grid of 4x2. The proposed algorithm, with the optimized communicatons
identified as "Prop" and its corresponding bar in the figure is the darkest.

8

7

Speedup

0 \ \ \ \ \
256-4-; 128-4-; 1000-4-; 64-4-z 32-4- Prog

Algorithm - Paramete

Figure 5.9: Matrix multiplication in LIDI, ScaLAPACK-PVM.

The best result in terms of Speedup obtained by ScaLAPACK-PVM is of sligggl/than

153

Chapter 5: Comparison with ScaLAPACK Parallel Computing in Local Area Networks

5.8, and the performance obtained by the algorithm proposed is about 7.2; the percentage
improvement with respect to ScaLAPACK-PVM is of approximately 25%. Thatith

the same hardware, the proposed algorithm has almost a 25% better performartbatthan

of ScaLAPACK-PVM. The optimal speedup is 8.

Figure 5.10 shows the best five performance results with the different paramete
combinations with ScaLAPACK-PVM, and the performance of the algorithm proposed
Chapter 3 (overlapped computing with communications) plus the broadcast messages
optimized in the LIDI-D network.

7

6

Speedup
I
\
|
|
|
|

¢ \ \ \ \ \
64-8-1 32-8-1 256-4-. 32-4- 64-4-2 Prog

Algorithm - Paramete

Figure 5.10: Matrix multiplication in LIDI-D, ScaLAPACK-PVM.

The best performance result obtained with ScaLAPACK-PVM in the LIDI onetw(last

gray bar from left to right of Figure 5.10, identified with 64-4-2) corresponds to the
running with data blocks of 64x64 elements and a 4x2 processor grid. The algorithm
proposed, with optimized communications, is shown and identified as "Prop" and its
corresponding bar is the darkest in the figure. The best performance resultsns dé
Speedup obtained by ScaLAPACK-PVM is of slightly less than 5.6 and the penfieema
obtained by the proposed algorithm is of almost 7; the percentage improvementionrela

to ScaLAPACK-PVM is of slightly more than 25%.

The best result in terms of Speedup obtained by ScaLAPACK-PVM is of sligggl/than

5.6, and the performance obtained by the algorithm proposed is of almost 7; the percentage
improvement with respect to ScaLAPACK-PVM is of approximately 25%. Thatith

the same hardware, the proposed algorithm has almost a 25% better performartbatthan

of ScaLAPACK-PVM. The optimal speedup is 8.

Figure 5.11 shows the best five performance results with the different paramete
combinations with ScaLAPACK-PVM, and the performance of the algorithm proposed
Chapter 3 (overlapped computing with communications) plus the broadcast messages
optimized in the LIDI-16 network.

The best performance result obtained with ScaLAPACK-PVM in LIDI-16 oekw(last
light gray bar from left to right, identified with 256-4-4) corresponds to the nugmwith
256x256-element data blocks and the 4x4 processors grid. The proposed algorithm, with
the optimized communications, is shown and identified as "Prop”, and its porrésg

154

Parallel Computing in Local Area Networks Chapter 5: Comparison with ScaLAPACK

bar is the darkest in the figure.

0 \ \ \ \ \
128-2-¢ 128-4-¢ 32-2-¢ 64-2-€ 256-4 Prof

Algorithm - Paramete

Figure 5.11: Matrix multiplication in LIDI-16, ScaLAPACK-PVM.

The best performance result in terms of Speedup obtained by ScaLAPACK-P\&¥ is
slightly more than 11 and the performance obtained with the proposed algorithm is of
almost 13.8; the percentage improvement with respect to ScaLAPACK-PVMabnafst

24%. That is, with the same hardware, the proposed algorithm has almost a 2486 bette
speedup than that of ScaLAPACK-PVM. The optimal speedup in this case is 16.

Since for LU factorization of matrices there are different block siamstiie proposed
algorithm, the results shown next have the following characteristics:
The different block sizes are shown in each bar of the following figures, which
correspond to the proposed algorithm of LU factorization, identified now witlopPr
block size".
The best performance results for ScaLAPACK and for the proposed algorithm are
shown, with each figure showing three light gray bars and three dark gray bars.

Figure 5.12 shows the three best performance results with the different paramet
combinations with ScaLAPACK-PVM and the three best results performasaés®f the
algorithm proposed in this chapter (computing overlapped with communicationggediffe
block sizes) implemented with broadcast messages optimized in LIDI network.

7

6

Speedu

¢ \ \ \
32-2-4 64-2-4 32-1-¢ Prop-64 Prop-100 Prop-128

Algorithm - Paramete

Figure 5.12: LU Matrix Factorization in LIDI, ScaLAPACK-PVM.

155

Chapter 5: Comparison with ScaLAPACK Parallel Computing in Local Area Networks

The best performance result obtained with ScaLAPACK-PVM in LIDI netw(akt light

gray bar from left to right of the figure, identified with 32-1-8) correspond&h®running

with block sizes of 32x32 elements and the 1x8 processor grid. The best perforofance
the proposed algorithm corresponds to the block size 128 and is indicated as "Prop-128" in
the last bar from left to right of the figure.

The best performance result in terms of speedup obtained by ScaLAPACK-P\d¥1 is
approximately 4.2 and the performance obtained with the proposed algorithm isasdtalm
6.4; the percentage improvement with respect to ScaLAPACK-PVM is of al®@4.
That is, with the same hardware, the proposed algorithm has an approximatelyeb®¥o
speedup than that of ScaLAPACK-PVM. The optimal speedup is 8.

In Figure 5.13, the results of the speedup obtained in LIDI-D network and LIDI-&6 ar
shown. In all the cases, the improvement with the proposed algorithm is among the 50%
and 60% in relation to the performance obtained by ScaLAPACK-PVM.

7 14

6 12

5 10

=]

3 4 S 8
D D
) o}
Q 3 — Q. 6 —
" n

2 — 4

1 — 2

0 ‘ I I 0 \ \ \

32-2-4 64-1-8 64-2« Prop-64 Prop-100 Prop-128 64-4-4 64-2-t 32-2-¢ Prop-100 Prop-32 Prop-64
Algorithm - Paramete Algorithm - Paramete
a) LIDI-D b) LIDI-16

Figure 5.13: LU Factorization of Matrices in LIDI-D and LIDI-16, ScaLAPACYNP.

5.3.3 Results: ScaL APACK-MPICH

ScalLAPACK installationover MPICH is also really simple, and so are the different
running alternatives (which are parametric). Since the format of the Bgsinewing the
results obtained is the same, the results will be presented not as in datath& previous
cases. In all the cases, the performance obtained with the algorithms ptopadisis thesis

is repeated in order to make a more immediate visual comparison. Figure 5.14 thlgows
results of the experiments in the two networks with eight PCs: LIDI and LIDI-D.

In the LIDI cluster, the algorithm proposed to multiply matrices has arosir33% better

performance than the ScaLAPACK library (in terms of Speedup values) ahe inlDI-D
cluster it outperforms more than the 27%.

156

Parallel Computing in Local Area Networks

Speedup

Chapter 5: Comparison with ScaLAPACK

Speedup

256-4-: 128-4-; 1000-4-; 64-4-2

Algorithm - Paramete

a) LIDI

32-4-2

\ c \

Prog 32-8-1

256-4-;

128-4-; 32-4-2 64-4-2 Prog

Algorithm - Paramete

b) LIDI-D

Figure 5.14: Matrix Multiplication in LIDI and LIDI-D, ScaLAPACK-MPICH.

In order to complete the data, the Figure 5.15 shows the results of the performance
obtained in the LIDI-16 network.

1€

32-8-2

32-2¢ 1284 32-4¢ 644

Algorithm - Paramete

1
Prog

Figure 5.15: Matrix Multiplication in LIDI-16, ScaLAPACK-MPICH.

In this case, the algorithm proposed in this thesis to multiply matriceslusters
outperforms the ScaLAPACK matrix multiplication in more than the 26%.

Summarizing, the results obtained by ScaLAPACK-MPICH are very simgathose
obtained with ScaLAPACK-PVM and, thus, the comparison of the performancetsesul
with the proposed matrix multiplication algorithm is similar as well.

The situation rather changes when the LU factorization is considered foysemarlhe
Figure 5.16 shows the speedup values obtained with ScaLAPACK-MPICH and repeats
those obtained with the algorithm proposed in this chapter for the two networkshif eig
PCs.

157

Chapter 5: Comparison with ScaLAPACK Parallel Computing in Local Area Networks

7 7
6 €
5 — — S
> >
° 4+ — — S 44 — —
[} [}
(] (]
Q 34— — — o 34—
N N
2 1 2 1
1 1 1 1
C T T T c T T 1
32-1-8 64-2-4 32-2-« Prop-64 Prop-100 Prop-128 64-1-8 64-2-4 128-2-4 Prop-64 Prop-100 Prop-128
Algorithm - Paramete Algorithm - Paramete
a) LIDI b) LIDI-D

Figure 5.16: LU Matrix Factorization in LIDI and LIDI-D, ScaLAPACK-MPICH

Comparing the Speedup values of ScaLAPACK-MPICH appearing in Figure 5.16 with
those obtained with ScaLAPACK-PVM in Figure 5.12 and Figure 5.13-a), it is iplest
note that the ScaLAPACK library has a better performance of the LU factmza/hen
MPICH is in charge of the data transport. In fact, the proposed algorithmimgegation to
ScalLAPACK-PVM ranges from 50% to 60%, but in relation to ScaLAPACK-WIRI
ranges from 30% to 32%. Two of the immediate conclusions from this information are:
- PVM has, in some cases, a strong communication performance penalizatiom, whic
becomes a penalization of the total performance.
The proposed parallel algorithms have an “almost constant” gain in reladidhet
algorithms implemented by ScalLAPACK. This gain, in percentage tefissof
approximately 25% in the case of matrix multiplication, and 30% in the case of LU
matrix factorization. This is really interesting because they considtvof problems
which are parallelized using the same principles and the gain is higher foy ibet
parallelization principles for local networks are “proved” as the best, at fea these
two cases: multiplication and LU factorization of matrices.

Figure 5.17, apart from completing the data of the matrix factorization inlphfal the
16-PCs network, adds valuable information in relation to ScaLAPACK perforenahen
the network is not completely “switched”, as in the case of this particular network.

14

6 — [

4 - [

2 - |

0 \ \ \
128-2-¢ 128-4-4 64-4-4 UDP-10(UDP-32 UDP-64

Algorithm - Paramete

Figure 5.17: LU Matrix Factorization in LIDI-16, ScaLAPACK-MPICH.

158

Parallel Computing in Local Area Networks Chapter 5: Comparison with ScaLAPACK

As it can be noticed, the performance of ScaLAPACK-MPICH is quite simidathat of
ScaLAPACK-PVM (and, thus, the difference with the matrix factori@atialgorithm
proposed in this chapter is again quite big). There are at least two reasomghith
ScaLAPACK-MPICH “gets worse™:
ScalLAPACK matrix factorization algorithm is not scalable and, thus, whene
computers are used, the performance gets worse.
The completely “switched” network generates an extra performance patn@hiznot
included in the completely “switched” networks and, consequently, the total @arall
performance remarkably gets worse.

In this point, it should be taken into account that the Speedup obtained in the two
interconnected networks with a single switch is of approximately 63% of the aptim
while the obtained by the LIDI-16 network (which does not have a single switch, bt thre
“cascade” switches) is of approximately 50% of the optimum. In consequence, since
- the performance of ScalLAPACK is highly influenced by the communication
performance,
the relative performance obtained in the two networks interconnected by a swigté
IS quite higher than that obtained in a network which does not count with that
interconnection characteristic,
ScalLAPACK's lack of scalability can be discarded, at least in principle.

5.3.4 ScaL APACK-MPICH and Scalability

This last subsection shows the results obtained in most of the clusters over tivaich
experimentation could be carried out in order to compare the algorithms propo#ead i
thesis with those implemented in ScaLAPACK to carry out the same tdsk.cluster is
composed by 20 PCs interconnected by a single 100 Mb/s Ethernet switch, i.e Xistse e
a complete switching with the 20 machines interconnected by the 100 Mb/s Ethieahiet.
5.4 briefly shows the PCs characteristics of the cluster, which shall lldabm now on
Cl-20, together with its computing capacity expressed in Mflop/s terms.

Processors Clock Freq. Memory Mflop/s
Intel P4 2.4 GHz 1GB 5000

Table 5.4: Characteristics of the Computers of the Cluster CI-20.

On the other hand, Table 5.5 shows the matrix sizes used in the problems of muitiplica
and LU factorization, respectively.

Multiplicacion de Matrices Factorizacion LU de Matrices
38000 65000

Table 5.5: Sizes of Problems in Cluster CI-20.

159

Chapter 5: Comparison with ScaLAPACK Parallel Computing in Local Area Networks

Since the ScaLAPACK library obtains its best performance results when thenigPICH
message passing library, all the experiments carried out with ScACKPmakes use of
MPICH for message passing. In a certain way, the experiments prdseské have two
characteristics that differentiate them from the previous:
1. They use the greatest quantity of machines and, in a certain way, show guiszlly
(up to 20 computers) the proposed algorithms scalability.
2. They use the computers with highest computing power, keeping the interconnection
network in 100 Mb/s, with which we have the worst relation between the perfarena
of local computing and that of the communications.

Since there are 20 computers, and ScaLAPACK recommendations for obtainingzejtimi
performance is to keep the grid PxQ with P as similar as possible to Qtf#&lyrids used
in the experiments were of 4x5 and 5x4 processors.

Figure 5.18 shows the performance values obtained with ScaLAPACK-MPICH &hd wi
the algorithm proposed in this thesis (computing overlapped with communicatiortiefor
multiplication of 38000x38000 element matrices. The best value obtained by ScalldAPAC
-MPICH is obtained with 32-block size and with the machines interconnectedasx4
processor grid. The absolute Speedup value obtained by ScaLAPACK-MPICH Issin t
case, of approximately 10. In the case of the algorithm proposed, we obtain a Speedup of
slightly more than 16, which represents an improvement of approximately a 628 wit
respect to ScaLAPACK-MPICH. In this case, the optimum Speedup value ish20, t
number of computers used.

1€
1€
14
1z

Speedup

0 \ \ \ \ \
32-4-E 6454 64-4%f 1285« 3252 Prog

Algorithm - Paramete
Figure 5.18: Matrix Multiplication in CI-20, ScaLAPACK-MPICH.

Figure 5.19 shows the performance values obtained with ScaLAPACK-MPICH &hd wi
the algorithm proposed in this thesis (computing overlapped with communicatiortiefor

LU factorization of 65000x65000 element matrices. The best value obtained by
ScaLAPACK-MPICH is obtained with 64-block size and with the machinesdntenected

as in a 4x5 processor grid. The absolute Speedup value obtained by ScaLAPACKIMPIC
is, in this case, slightly more than 10. In the case of the algorithm proposedbtamed
Speedup is of more than 18, which represents an improvement of approximately an 80%
with respect to ScaLAPACK-MPICH. Also in this case, the optimum Sppevalue is 20,

the number of computers used.

160

Parallel Computing in Local Area Networks Chapter 5: Comparison with ScaLAPACK

0 \ \ \
128-4-f 100-4-¢ 64-4-t Prop-64 Prop-100 Prop-12i

Algorithm - Paramete

Figure 5.19: Matrix LU Factorization in CI-20, ScaLAPACK-MPICH.

It is very interesting to notice that, beyond the comparison with ScaLAPAR&Kobtained
Speedup is really close to the absolute maximum. In the case of matricéplication,
almost the 82% of the optimum performance is obtained, and in the case of the LU
factorization almost the 93% of the optimum is obtained, which is really sattdy,
taking into account that, for instance, there is an interconnection network of onlyld60M
and with high latency.

5.4 Summary of the Comparison with ScaLAPACK

Table 5.6 briefly shows the comparison of the performance obtained by the algorithms
proposed in this thesis with those implemented by/in ScaLAPACK. For eatte @lusters
used (LIDI, LIDI-D, LIDI-16, and CI-20)

ScalLAPACK's performance in terms of Speed8ga(column)

The proposed algorithms’ performance in terms of Spedehgp (column)

The percentage of the improvement in Speedup obtained with the use of the algorithms

proposed in this thesi8qProp column).

LIDI LIDI-D LIDI-16 Cl-20
8 PIII - 100 Mb/s 8 D - 100 Mb/s 16 PCs - 100 Mb/s* 20 PCs - 100 Mb/s

Sca Prop %Prop Sca Prop %Prop Sca Prop %Prop Sca Prop %Prop
MM 584 | 7.18 +23%| 5.48 6.98 +27% 10.87 13.72 +26% 10.08 16.362%

LU 493 6.38 +30% 4.97 659 +33% 8. 12.35 +51% 10.28 18.56 %+81
*The only Ethernet network with cascade switcheslmaation; the remaining has complete switching.

Table 5.6: Summary of the Comparison with ScaLAPACK.

Even though the gain in terms of Speedup is noteworthy, it is even more importdatthe

that in clusters with more computers and with a worse performance relagioreen local
computing and communications, the gain tends to be higher. Even more, independently of
the comparison with ScaLAPACK, Table 5.7 shows the absolute Speedup values obtained

161

Chapter 5: Comparison with ScaLAPACK Parallel Computing in Local Area Networks

by the algorithms proposed in this thesis (colu@nop) together with the optimal
percentage that those values represent (cob4@p).

LIDI LIDI-D LIDI-16 Cl-20
8 PIIl - 100 Mb/s 8 D - 100 Mb/s 16 PCs - 100 Mb/s* | 20 PCs - 100 Mb/s
Prop %Op Prop % Op Prop %Op Prop % Op
MM 7.18 90% 6.98 87% 13.72 86% 16.35 82%
LU 6.38 80% 6.59 82% 12.35 T7% 18.56 93%

*The only Ethernet network with cascade switcheslzioation; the remaining has complete switching.
Table 5.7: Relation of the Proposed Algorithms with the Absolute Optimum.

All the values, except for LU factorization in LICI-16, outperforms the 80 % lud t
absolute optimum, which is highly satisfactory, and even more when rec#iiatg really
low-cost interconnection network, which does not depend on the use of switches for
interconnection, is being used. Even when the exception of LU in LIDI-16 could beassed
an indicator that the algorithm is not scalable enough, this assumption could bedddsca

basing on the values obtained for more quantity of computers and of higher CI-20 cluster
computing power.

162

