6 LAPACK

So far, we have seen ideas of:

o (Cluster architecture

Sequential and parallel computing performance evaluation

e Practice on sequential computing with matrix multiplication
e Cluster programming with MPI

e Communication evaluation on clusters

e Rough analysis of granularity

However, remind we started with

Linear Algebra
AN .
BLAS
LAPACK ‘
Matrix

BLAS Multiplication

From LAPACK Homepage http://www.netlib.org/lapack/

“LAPACK is written in Fortran77 and provides routines for solving systems of si-
multaneous linear equations, least-squares solutions of linear systems of equations, eigen-
value problems, and singular value problems. The associated matrix factorizations (LU,
Cholesky, QR, SVD, Schur, generalized Schur) are also provided, as are related compu-
tations such as reordering of the Schur factorizations and estimating condition numbers.
Dense and banded matrices are handled, but not general sparse matrices. In all areas,
similar functionality is provided for real and complex matrices, in both single and double
precision.”

“The original goal of the LAPACK project was to make the widely used EISPACK
and LINPACK libraries run efficiently on shared-memory vector and parallel processors.”

“LAPACK routines are written so that as much as possible of the computation is
performed by calls to the Basic Linear Algebra Subprograms (BLAS). While LINPACK
and EISPACK are based on the vector operations kernels of the Level 1 BLAS, LAPACK
was designed at the outset to exploit the L3 BLAS”

Acknowledgements: ... NSF Grant ... DOE Grant ...
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Problems Implementation
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From LINPACK Homepage http://www.netlib.org/linpack/

“LINPACK is a collection of Fortran subroutines that analyze and solve linear equa-
tions and linear least-squares problems. The package solves linear systems whose ma-
trices are general, banded, symmetric indefinite, symmetric positive definite, triangular,
and tridiagonal square. In addition, the package computes the QR and singular value
decompositions of rectangular matrices and applies them to least-squares problems.”

From EISPACK Homepage http://www.netlib.org/eispack/

“EISPACK is a collection of Fortran subroutines that compute the eigenvalues and
eigenvectors of nine classes of matrices: complex general, complex Hermitian, real general,
real symmetric, real symmetric banded, real symmetric tridiagonal, special real tridiago-
nal, generalized real, and generalized real symmetric matices. In addition, two routines are
included that use singular value decomposition to solve certain least-squares problems.”

Finally, there are a lot of functions (well, subroutines...), each one with a lot of parameters.
Classifications (from LAPACK documentation):

o driver routines, each of which solves a complete problem, for example solving a
system of linear equations, or computing the eigenvalues of a real symmetric matrix.
Users are recommended to use a driver routine if there is one that meets their
requirements.

e computational routines, each of which performs a distinct computational task, for
example an LU factorization, or the reduction of a real symmetric matrix to tridi-
agonal form. Each driver routine calls a sequence of computational routines. Users
(especially software developers) may need to call computational routines directly to
perform tasks, or sequences of tasks, that cannot conveniently be performed by the
driver routines.

e Auxiliary routines, which in turn can be classified as follows:
— routines that perform subtasks of block algorithms — in particular, routines

that implement unblocked versions of the algorithms;

— routines that perform some commonly required low-level computations, for ex-
ample scaling a matrix, computing a matrix-norm, or generating an elementary
Householder matrix; some of these may be of interest to numerical analysts or
software developers and could be considered for future additions to the BLAS;

— a few extensions to the BLAS, such as routines for applying complex plane
rotations, or matrix-vector operations involving complex symmetric matrices

(the BLAS themselves are not part of LAPACK).

i.e. (approx.)
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Linear Systems

Driver Least Squares

Eigens

Problem Oriented

LAPACK Routines Computational
Factorizations
Block-Subtasks
Auxiliary
Low-Level
What are the “important” routines? Well, it depends...
o “...the scientists’ goals are to solve the challenging problems...” = Driver.
e Performance = Computational. Our work! (7).
Summarizing LAPACK sources and documentation
LAPACK Documentation - Sources
Homepage with software LAPACK User's Guide
Hardcopy Book HTML Book

And “LAWNs” (LAPACK Working Note/s) and A LOT of papers. The web sites:
e LAPACK (1) http://www.netlib.org/lapack
e LAPACK (2) http://www.netlib.org/lapack-dev/lapack-coding/program-style.html
e LAPACK Users’ Guide http://www.netlib.org/lapack/lug/index.html

e LAPACK Working Notes (LAWNSs) http://www.netlib.org/lapack/lawns/index.html
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7 BLAS

From LAPACK Homepage http://www.netlib.org/lapack/

“LAPACK routines are written so that as much as possible of the computation is
performed by calls to the Basic Linear Algebra Subprograms (BLAS). While LINPACK
and EISPACK are based on the vector operations kernels of the Level 1 BLAS, LAPACK
was designed at the outset to exploit the L3 BLAS — a set of specifications for FORTRAN
subprograms that do various types of matrix multiplication and the solution of triangular
systems with multiple right-hand sides”

Finally, almost everything is written in terms of the BLAS and most of the whole perfor-
mance depends on the L3 BLAS performance.

From BLAS Homepage http://www.netlib.org/blas/

“This material is based upon work supported by the National Science Foundation
under Grant No. ASC-9313958 and DOFE Grant No. DE-FG03-94ER25219. Any opinions,
findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation

(NSF) or the Department of Energy (DOE).”

So??7 ok, information is on its FAQ (http://www.netlib.org/blas/faq.html):
1.1) What are the BLAS?
1.2) Publications/references for the BLAS?
1.3) Is there a Quick Reference Guide to the BLAS available?
1.4) Are optimized BLAS libraries available?
1.5) What is ATLAS?
1.6) Where can I find vendor supplied BLAS?
1.7) Where can I find the Intel BLAS for Linux?
1.8) Where can I find Java BLAS?
1.9) Is there a C interface to the BLAS?
1.10) Are prebuilt Fortran77 ref implementation BLAS libraries available from Netlib?

What kind of operations are included? Every operation is included in one “Level”, as
described in the next section.

7.1 BLAS Levels

Subroutines included in BLAS are classified according to its requirements of memory and
floating point operations. Assuming

e « and [ are scalars.
e v and y are n-elements vectors.

o A B.and (' are square matrices with n x n elements.
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The BLAS are divided in three levels:

e Level 1 or L1 BLAS: routines making operations among vectors, thus with access to
O(n) data and number of floating point operations also O(n), such as y = ax + y.

e Level 2 or L2 BLAS: routines making operations among vectors and matrices, thus
with access to O(n?) data and number of floating point operations also O(n?), such

as y = aAx + fy.

e Level 3 or L3 BLAS: routines making operations among matrices, thus with access to
O(n?) data and number of floating point operations O(n?), such as ' = aAB+ 3C.

Summaryzing:

O [ data

Level 1 14
O @ flops
0 @’ data

BLAS Level 2 i
O @’) flops
0 @’ data

Level 3 >
O @’) flops

where flops: “number of floating point operations”. Note that
e L1 and L2: 1 flop per access.

e [.3: n flops per access?!

And this is why

“Finally, almost everything is written in terms of the BLAS and most of the whole
performance depends on the L3 BLAS performance.”
(from the previous page).

7.2 Level 3 BLAS

Given that “...most of the whole performance depends on the L3 BLAS performance” it
is worth analyzing 1.3 BLAS in deeper detail. The subroutines defined in this level are:

1) “General” Matrix Multiplication, or matrix multiplication with “general” matrices
(_.GEMM)
C +— aOp(A)Op(B) + B C

where A, B, and C are matrices, a and 3 are scalars, and Op(X) may be X, X7 or X

Interesting... But how do you make C'= A x B?
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2) Matrix multiplication involving a symmetric or Hermitian matrix (.SYMM or _-HEMM)

'+ aAB+ pC or '+ aBA+ BC

where matrix A is symmetric ((SYMM) or Hermitian (_(HEMM) and is multiplied at left
or right of matrix B depending upon a parameter.

3) Matrix multiplication involving a triangular matrix (_TRMM)
B+ aOp(A)B or B+ aBOp(A)

where matrix A is triangular, Op(X) may be X, XT or X# and Op(A) is multiplied at
left or right of matrix B depending upon a parameter.

4) Rank-k update of a symmetric or Hermitian matrix (.SYRK or _-HERK)
C «— aAOp(A) 4+ BC or C «— aOp(A)A + C

where matrix A is symmetric (.SYRK) or Hermitian ((HERK), if A is symmetric then

Op(A) = AT and Op(A) = AH otherwise, and A is multiplied at left or right of matrix B
depending upon a parameter.

5) Rank-2k update of a symmetric or Hermitian matrix (_SYR2K or _-HER2K)
C <+ aAOp(B) +aBOp(A) 4+ pC or C < aOp(A)B +aOp(B)A+ pC

where
if matrix C' is symmetric (_SYR2K) then Op(X) = XT and o € IR, thus @ = a,
if matrix €' is Hermitian (_LHER2K) then Op(X) = X

and A is multiplied at left or right of matrix B depending upon a parameter.
6) Solution of triangular systems of equations with multiple right-hand sides (_TRSM)
Op(A)X =aB or XOp(A) =aB

where matrix A is lower or upper triangular (eventually with unit diagonal), Op(A) may
be A, AT or A” and Op(A) is multiplied at left or right of matrix X depending upon a
parameter. The matrix X is overwritten on B.

7.3 Wait, Wait, What about Matrix Multiplication?

Good question, because

Linear Algebra
AN .
BLAS
LAPACK ‘
Matrix

BLAS Multiplication
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Well, from _.GEMM to XXR2K -items 1) to 5) in the previous enumeration of L3 BLAS
description- subroutines are basically matrix multiplications. How are related solutions
of triangular systems of equations to matrix multiplications?

Kagstrom B., P. Ling, C. Van Loan, “Portable High-Performance GEMM-based Level
3 BLAS”, R. F. Sincovec et al., Editor, Parallel Processing for Scientific Computing,
Philadelphia, 1993, STAM, pp. 339- 346.

An example starting with one possible “TRSM, where some blocks/submatrices can be
defined (just like in/for the matrix multiplication)

T 0 X = C
c1 Tll X1
Cz T21 T22 X2
C3 T31 T32 T33 X3

Thus, solving TX = C could be made/defined by (why?)

i = TuX (1)
Cy = ThuXy +T15%X; (2)
Cs = T5 X1 4 T35 X5 + T55X5 (3)

In fact, the resolution method using blocks/submatrices is basically the same as that of
using directly equations and scalars, i.e. forward substitution. First, solve Eq.(1) as usual
for a triangular system of equations:

Tlle = Cl

Thus obtaining the value of X; and use it on Eq.(2), which becomes another simple
triangular system of equations

T22X2 = 02 - T21X1 (4)

which can be solved again, thus obtaining the value of X5, and now using the values of

X; and X3, Eq.(3) becomes
T53 X3 = C3 — T Xy — 152X, (5)
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which is another triangular system of equations. So far, nothing new... except for blocks...
Note that Eq.(4) and Eq.(5) imply multiplying matrices... or not?

Starting again from Eq.(1), Eq.(2), and Eq.(3), and solving the triangular system of
equations for X, it is possible to define

Co—TnX: = TyX, (6)
Cs —T5: X7 = T5.X5 +T53X5 (7)

And this system of equations has very important characteristics:
e Solves the original system of equations.

e Can be solved applying the same procedure: obtain a the values for X, and solve
the rest of equations.

e Has two simultaneous matrix multiplications.

Where/How are the matrix multiplications?

Oy Cy —TnXy
O3+ Cs —T5 X4

Ups! It’s just like the _GEMM already defined...
C +— aOp(A)Op(B) + B C

Do you see the relationship? ...

7.4 Matrix Multiplication, L3 BLAS, and Performance

Given that “...most of the whole performance depends on the L3 BLAS performance” and
everything in 1.3 BLAS may be GEMM-based, the BIG question is:

Matrix multiplication performance is the whole performance to be obtained by the
applications?

By the way: What about parallel performance? And parallel performance on clusters?
Are these questions relevant in this context?

Going back to libraries: Examples from LAPACK and BLAS in the next sections.
Remember that HPC on linear algebra applications imply using libraries such as LAPACK
and/or BLAS.

30



8 Examples from LAPACK and (L3) BLAS

From LAPACK man pages:

SGETRF (1) ) SGETRF (1)

NAME
SGETRF - compute an LU factorization of a general M-by-N
matrix A using partial pivoting with row interchanges

SYNOPSIS
SUBROUTINE SGETRF( M, N, A, LDA, IPIV, INFO )

INTEGER INFO, LDA, M, N
INTEGER IPIV( * )
REAL A(C LDA, * )

PURPOSE
SGETRF computes an LU factorization of a general M-by-N
matrix A wusing partial pivoting with row interchanges.
The factorization has the form
A=P*xL *x7T

where P is a permutation matrix, L 1s lower triangular
with wunit diagonal elements (lower trapezoidal if m > n),
and U is upper triangular (upper trapezoidal if m < n).

This is the right-looking Level 3 BLAS version of the

algorithm.
ARGUMENTS
M (input) INTEGER

The number of rows of the matrix A. M >= 0.

N (input) INTEGER
The number of columns of the matrix A. N >= 0.

A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix to be factored. O0On
exit, the factors L and U from the factorization A
= P*xL*U; the unit diagonal elements of L are not
stored.

LDA (input) INTEGER
The leading dimension of the array A. LDA >=
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max(1,M).

IPIV (output) INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i
of the matrix was interchanged with row IPIV(i).

INFO (output) INTEGER
= 0: successful exit
< 0: 1f INFO = -i, the i-th argument had an ille-
gal value
> 0: if INFO = i, U(i,i) is exactly zero. The
factorization has been completed, but the factor U
is exactly singular, and division by zero will
occur if it is used to solve a system of equa-
tions.

LAPACK version 3.0 15 June 2000 SGETRF (1)

Two details: LDA and REAL A( LDA, * ). Well... the third detail: name? From LAPACK
online documentation:

Naming Scheme
The name of each LAPACK routine is a coded specification of its function (within the
very tight limits of standard Fortran 77 6-character names).
All driver and computational routines have names of the form XYYZZZ, where for some
driver routines the 6th character is blank.
The first letter, X, indicates the data type as follows

S REAL

D DOUBLE PRECISION

C COMPLEX

7 COMPLEX*16 or DOUBLE COMPLEX
When we wish to refer to a LAPACK routine generically, regardless of data type, we
replace the first letter by “x”. Thus xGESV refers to any or all of the routines SGESV,
CGESV, DGESV and ZGESV.
The next two letters, YY, indicate the type of matrix (or of the most significant matrix).
Most of these two-letter codes apply to both real and complex matrices; a few apply
specifically to one or the other, as indicated in Table 2.1.
Table 2.1: Matrix types in the LAPACK naming scheme

BD bidiagonal

DI diagonal

GB general band

GE general (i.e., unsymmetric, in some cases rectangular)

GG general matrices, generalized problem (i.e., a pair of general matrices)

GT general tridiagonal

HB (complex) Hermitian band

HE (complex) Hermitian
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HG upper Hessenberg matrix, generalized problem (i.e a Hessenberg and a triangular
matrix)

HP (complex) Hermitian, packed storage

HS upper Hessenberg

OP (real) orthogonal, packed storage

OR (real) orthogonal

PB symmetric or Hermitian positive definite band

PO symmetric or Hermitian positive definite

PP symmetric or Hermitian positive definite, packed storage

PT symmetric or Hermitian positive definite tridiagonal

SB (real) symmetric band

SP symmetric, packed storage

ST (real) symmetric tridiagonal

SY symmetric

TB triangular band

TG triangular matrices, generalized problem (i.e., a pair of triangular matrices)

TP triangular, packed storage

TR triangular (or in some cases quasi-triangular)

T7 trapezoidal

UN (complex) unitary

UP (complex) unitary, packed storage
When we wish to refer to a class of routines that performs the same function on different
types of matrices, we replace the first three letters by “xyy”. Thus xyySVX refers to all
the expert driver routines for systems of linear equations that are listed in Table 2.2.
The last three letters Z77 indicate the computation performed. Their meanings will be
explained in Section 2.4. For example, SGEBRD is a single precision routine that performs
a bidiagonal reduction (BRD) of a real general matrix.
The names of auxiliary routines follow a similar scheme except that the 2nd and 3rd
characters YY are usually LA (for example, SLASCL or CLARFG). There are two kinds
of exception. Auxiliary routines that implement an unblocked version of a block algorithm
have similar names to the routines that perform the block algorithm, with the sixth
character being “2” (for example, SGETF2 is the unblocked version of SGETRF). A few
routines that may be regarded as extensions to the BLAS are named according to the

BLAS naming schemes (for example, CROT, CSYR).

And, finally, on “Section 2.4”
xyyTRF: factorize (obviously not needed for triangular matrices);
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From BLAS man pages:

SGEMM(1) BLAS routine SGEMM(1)

NAME
SGEMM - perform one of the matrix-matrix operations C :=
alpha*op( A )*op( B ) + betax*C,

SYNOPSIS
SUBROUTINE SGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA,
B, LDB, BETA, C, LDC )

CHARACTER*1 TRANSA, TRANSB

INTEGER M, N, K, LDA, LDB, LDC
REAL ALPHA, BETA
REAL A(C LDA, * ), B( LDB, * ), C( LDC, * )

PURPOSE
SGEMM performs one of the matrix-matrix operations

where op( X ) is one of
op( X ) =X or op( X ) =X,
alpha and beta are scalars, and A, B and C are matrices,

with op( A ) an m by k matrix, op( B ) a k by n matrix
and C an m by n matrix.

PARAMETERS
TRANSA - CHARACTER*1. On entry, TRANSA specifies the form
of op( A ) to be used in the matrix multiplication as fol-

lows:

TRANSA = N’ or ’n’, op( A ) =A.
TRANSA = T’ or ’t’, op( A ) = A’.
TRANSA = ’C’ or ’c’, op( A ) =A’.

Unchanged on exit.

TRANSB - CHARACTER*1. On entry, TRANSB specifies the form
of op( B ) to be used in the matrix multiplication as fol-
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lows:

TRANSB

TRANSB

TRANSB

M

= N’ or ’n’, op( B ) = B.
=T’ or ’t’, op( B ) =B’
= ’C’ or ’'c’, op(B ) =B".
Unchanged on exit.
- INTEGER.
On entry, M  specifies the number of rows of

ALPHA

LDA

the matrix op( A ) and of the matrix C. M
must be at least zero. Unchanged on exit.

- INTEGER.

On entry, N specifies the number of columns of
the matrix op( B ) and the number of columns of the
matrix C. N must be at least zero. Unchanged on
exit.

- INTEGER.

On entry, K specifies the number of columns of
the matrix op( A ) and the number of rows of the
matrix op( B ). K must be at least Zero.
Unchanged on exit.

- REAL.
On  entry, ALPHA specifies the scalar alpha.
Unchanged on exit.

- REAL array of DIMENSION ( LDA, ka ), where ka is
k when TRANSA = N’ or ’n’, and 1is m other-
wise. Before entry with TRANSA = ’N’ or ’n’, the
leading m by k part of the array A must contain
the matrix A, otherwise the leading k by m part
of the array A must contain the matrix A.
Unchanged on exit.

- INTEGER.

On entry, LDA specifies the first dimension of A as
declared in the calling (sub) program. When TRANSA
= N’ or ’n’ then LDA must be at least max( 1, m
), otherwise LDA must be at least max( 1, k ).
Unchanged on exit.

- REAL array of DIMENSION ( LDB, kb ), where kb is
n when TRANSB = ’N’ or ’n’, and is k other-
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wise. Before entry with TRANSB = ’N’ or ’n’, the
leading k by n part of the array B must contain
the matrix B, otherwise the leading n by k part
of the array B must contain the matrix B.
Unchanged on exit.

LDB - INTEGER.
On entry, LDB specifies the first dimension of B as
declared in the calling (sub) program. When TRANSB
= N’ or ’n’ then LDB must be at least max( 1, k
), otherwise LDB must be at least max( 1, n ).
Unchanged on exit.

BETA - REAL.
On entry, BETA specifies the scalar beta. When
BETA 1is supplied as zero then C need not be set on
input. Unchanged on exit.

C - REAL array of DIMENSION ( LDC, n ).
Before entry, the leading m by n part of the
array C must contain the matrix C, except when
beta 1is zero, in which case C need not be set on

entry. On exit, the array C 1is overwritten by
the m by n matrix ( alpha*op( A )x*op( B ) +
betaxC ).

LDC - INTEGER.
On entry, LDC specifies the first dimension of C as
declared in the calling (sub) program. LDC

must be at least max( 1, m ). Unchanged on
exit.

Level 3 Blas routine.

-- Written on 8-February-1989. Jack Dongarra,
Argonne National Laboratory. Iain Duff, AERE Har-
well. Jeremy Du Croz, Numerical Algorithms Group

Ltd. Sven Hammarling, Numerical Algorithms Group
Ltd.

BLAS routine 16 October 1992 SGEMM (1)

Now it’s possible to explain why the parameters LDA, LDB, and LDC are necessary... Hint:
block processing.
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In fact, man pages for LAPACK and BLAS routines show the Fortran port of the
libraries. Assuming the declarations of

! square matrices
REAL, DIMENSION(n, n):: a, b, c

How would be the call to SGEMM to make a = b x c?, remember

SUBROUTINE SGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA,
B, LDB, BETA, C, LDC )

Fortran is fine, but... are there other ports? There is a C interface to the BLAS defined in
the BLAS Technical Forum Standard http://www.netlib.org/blas/blast-forum/. Most of
the material is covered in http://www.netlib.org/blas/blast-forum/cinterface.pdf as well
as the ultimate C BLAS reference, the file cblas.h, which can be obtained in the same
site, at http://www.netlib.org/blas/blast-forum/cblas.h

The Fortran SGEMM becomes the C function cblas_sgemm as explained in the file
cinterface.pdf, which is included in cblas.h

void cblas_sgemm(const enum CBLAS_ORDER Order,
const enum CBLAS_TRANSPOSE TransA,
const enum CBLAS_TRANSPOSE TransB,
const int M, const int N, const int K,
const float alpha, const float *A,
const int lda, const float *B, const int 1db,
const float beta, float *C, const int 1ldc);

Note that except for the first parameter, parameters are almost the same as those for the
Fortran subroutine SGEMM. Furthermore, definitions of enum types are in the file cblas.h
too

/*

* Enumerated and derived types

*/
#define CBLAS_INDEX size_t /#* this may vary between platforms */
enum CBLAS_ORDER {CblasRowMajor=101, CblasColMajor=102};

enum CBLAS_TRANSPOSE {CblasNoTrans=111, CblasTrans=112, CblasConjTrans=113};

Having all of these definitions... How would be the call to SGEMM to makea = b x ¢
in the C port of BLAS or cblas?

Why is BLAS more than a good idea for software development and/or subroutines
study/definition/classification? Some ideas behind BLAS implementations:

e Almost every hardware vendor has its own BLAS implementation: MKL (Intel
Matrix Kernel Library), ACML (AMD Core Math Library). In fact, these are
libraries which include BLAS.

o There are other libraries, not associated to any hardware vendor, such as ATLAS
(Automatically Tuned Linear Algebra Software), which also includes BLAS.
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A little and home made performance comparison via DGEMM (3000 x 3000 elements)
on an AMD Athlon 3000 with Linux 32 bits and ifort

Impl. | Mflop/s
No Opt 104
ATLAS 2.429
ACML 2.773

MKL 2.524

DGEMM Comparison for Different Implementations

More on performance from Intel: http://www.intel.com/cd/software/products/asmo-na/
eng/266858.htm, look at the threads specification/s.
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9 A Step Forward: ScaLAPACK
From ScaLAPACK homepage http://www.netlib.org/scalapack

“The ScaLAPACK project was a collaborative effort involving several institutions:

Oak Ridge National Laboratory

Rice University

University of California, Berkeley

University of California, Los Angeles

University of Illinois

University of Tennessee, Knoxville
and comprised four components:
e dense and band matrix software (ScaLAPACK)
e large sparse eigenvalue software (PARPACK and ARPACK)

e sparse direct systems software (CAPSS and MFACT)

preconditioners for large sparse iterative solvers (ParPre)

Funding for this effort came in part from DARPA, DOE, NSF., and CRPC.”

From ScaLAPACK (again) homepage http://www.netlib.org/scalapack/scalapack _home
(ok, it is some confusing)

“The ScaLAPACK (or Scalable LAPACK) library includes a subset of LAPACK routines
redesigned for distributed memory MIMD parallel computers. It is currently written
in a Single-Program-Multiple-Data style using explicit message passing for interproces-
sor communication. It assumes matrices are laid out in a two-dimensional block cyclic
decomposition.”

This first paragraph has a lot of information:
Subset of LAPACK routines.

Distributed memory MIMD parallel computers.
e SPMD.

o Explicit message passing.

e Matrices data distribution!

Most of the documentation (and much of the code) is like LAPACK. In fact, the “graphical
view” of the ScaLAPACK sources and documentation is
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ScaLAPACK Documentation - Sources

Homepage with software ScaLAPACK User's Guide

Hardcopy Book HTML Book

And some “lawns” (LAPACK Working Note/s) and A LOT of papers.

The official relationship among ScaLAPACK, LAPACK and BLAS is shown in the ScalLA-

PACK homepage, which can be summarized as

ScaLAPACK

,,,,,,,,,,,,,,,,

Added by ScaLAPACK
e PBLAS.
e BLACS.
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A little introduction to “...two-dimensional block cyclic decomposition...” Having a matrix

and a 2-Dimensional array of processors:

A
a
00 01 02 03 04 05 06 07
10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
alalalalala|la|a
30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
60 61 62 63 64 65 66 67
alalalalala|a |a
70 71 72 73 74 75 76 77
The resulting matrix distribution is
A
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a d d e N
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Reason: matrix factorization algorithms. Why does matrix distribution becomes visible
to the user?

What about an example?

PSGETRF (1) ) PSGETRF (1)

NAME
PSGETRF - compute an LU factorization of a general M-by-N
distributed matrix sub( A ) = (IA:IA+M-1,JA:JA+N-1) using
partial pivoting with row interchanges

SYNOPSIS
SUBROUTINE PSGETRF( M, N, A, IA, JA, DESCA, IPIV, INFO )

INTEGER IA, INFO, JA, M, N
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INTEGER DESCA( * ), IPIV( * )
REAL AC * )

PURPOSE

PSGETRF computes an LU factorization of a general M-by-N
distributed matrix sub( A ) = (IA:IA+M-1,JA:JA+N-1) using
partial pivoting with row interchanges. The factorization
has the form sub( A ) = P * L * U, where P is a permuta-
tion matrix, L is lower triangular with unit diagonal ele-
ments (lower trapezoidal if m > n), and U is upper trian-
gular (upper trapezoidal if m < n). L and U are stored in
sub( A ).

This is the right-looking Parallel Level 3 BLAS version of
the algorithm.

Each global data object 1is described by an associated
description vector. This vector stores the information
required to establish the mapping between an object ele-
ment and its corresponding process and memory location.

Let A be a generic term for any 2D block cyclicly dis-
tributed array. Such a global array has an associated
description vector DESCA. In the following comments, the
character _ should be read as "of the global array".

NOTATION STORED IN EXPLANATION

—————————————————————————————————————— DTYPE_A(global)
DESCA( DTYPE_ )The descriptor type. In this case,

DTYPE_A = 1.
CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle,
indicating

the BLACS process grid A is
distribu-

ted over. The context
itself is glo-
bal, but the handle (the

integer

value) may vary.
M_A (global) DESCA( M_ ) The number of rows in the
global

array A.
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N_A (global) DESCA( N_ ) The number of columns in

the global

array A.
MB_A (global) DESCA( MB_ ) The blocking factor used to
distribute

the rows of the array.
NB_A (global) DESCA( NB_ ) The blocking factor used to
distribute

the columns of the array.
RSRC_A (global) DESCA( RSRC_ ) The process row over which
the first

row of the array A is dis-
tributed. CSRC_A (global) DESCA( CSRC_ ) The process col-
umn over which the

first column of the array A

is

distributed.
LLD_A (local) DESCA( LLD_ ) The leading dimension of
the local

array. LILD_A >=

MAX(1,L0Cr(M_A)).

Let K be the number of rows or columns of a distributed
matrix, and assume that its process grid has dimension p x
q.
LOCr( K ) denotes the number of elements of K that a pro-
cess would receive if K were distributed over the p pro-
cesses of its process column.
Similarly, LOCc( K ) denotes the number of elements of K
that a process would receive if K were distributed over
the q processes of its process row.
The values of LOCr() and LOCc() may be determined via a
call to the ScalLAPACK tool function, NUMROC:

LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW
),

LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL
). An upper bound for these quantities may be computed
by:

LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A

LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A

This routine requires square block decomposition ( MB_A =
NB_A ).

ARGUMENTS
M (global input) INTEGER
The number of rows to be operated on, 1i.e. the
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IA

JA

DESCA

number of rows of the distributed submatrix sub( A
). M >=0.

(global input) INTEGER

The number of columns to be operated on, i.e. the
number of columns of the distributed submatrix
sub( A ). N >= 0.

(local input/local output) REAL pointer into the
local memory to an array of dimension (LLD_A,
LOCc(JA+N-1)). On entry, this array contains the
local pieces of the M-by-N distributed matrix sub(
A ) to be factored. On exit, this array contains
the local pieces of the factors L and U from the
factorization sub( A ) = P*L*U; the unit diagonal
ele- ments of L are not stored.

(global input) INTEGER
The row index in the global array A indicating the
first row of sub( A ).

(global input) INTEGER
The column index in the global array A indicating

the first column of sub( A ).

(global and local input) INTEGER array of dimen-

sion DLEN_.

IPIV

The array descriptor for the distributed matrix A.

(local output) INTEGER array, dimension (

LOCr(M_A)+MB_A )

INFO

This array contains the pivoting information.
IPIV(i) -> The global row local row i was swapped
with. This array 1s tied to the distributed
matrix A.

(global output) INTEGER

= 0: successful exit

< 0: If the i-th argument is an array and the j-
entry had an illegal value, then INFO =
-(i*100+j), if the i-th argument is a scalar and
had an 1illegal value, then INFO = -1. > 0: If
INFO = K, U(IA+K-1,JA+K-1) is exactly =zero. The
factorization has been completed, but the factor U
i1s exactly singular, and division by zero will
occur 1f 1t 1s wused to solve a system of equa-
tions.
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10 Specific Algorithms for Simple Operations

First: there are not complex operations. However, the simplest (and most important?):
matrix multiplication. Given

Ae R

and

B¢ RM™"
where the elements of matrix A are denoted as
aij, 1 <e<m,1 <5<k
and the elements of matrix B are denoted as
bil<i<k1<j<n

%3

matrix

C E RT)’LXTL

with elements denoted as

from the multiplication

C=AxB
is defined by

k
Cij = Z aikbkj
r=1

If m = n = k, the number of floating point operations is O(n”). Furthermore, the exact
number of floating point operations, flopsM M, is

FflopsM M = 2n°* —n?
having square matrices of order n. The general parallel matrix multiplication algorithms:
e For multiprocessors (shared memory parallel computers).
e For multicomputers (distributed memory parallel computers).

o lFor Clusters!

10.1 Matrix Multiplication on Multiprocessors

The simplest

P
1
A
P CrH—
2 L 1
Data in
Processors shared
P3 B memory
P
4
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With recursion

00

01

10

11

mat_mul (A, B, C,

s)

/* A, B: operands */
/* C
/* s

{

if (sequential multiplication)

else

{

result */

matrices

o
01
mCl
01
B B
00 01
B 10 B 11
o
- 11
C1l
11
/* C = BAXB */
(square) size */

mat mul(A , B , CO , s/2
—_ 00 00 00
mat mul(A , B , C1 , s/2
—_ 01 10 00
mat mul(A , B , CO , s/2
— 00 01 01
mat mul(A , B , Cl1 , s/2
—_ 01 11 01
mat mul(A , B , CO , s/2
—_ 10 00 10
mat mul(A , B , C1 , s/2
—_ 11 10 10
mat mul(A , B , CO , s/2
— 10 01 11
mat mul(A , B , Cl1 , s/2
—_ 11 11 11
cC =Co0 + C1 ;
00 00 00
CcC =Co0 + C1 ;
01 01 01
C = Co + C1 ;
10 10 10
cC =C0 + C1 ;
11 11 11
Is Coo == COOO + Cloo?

Coo Co1 Ago A
Coo Co1 | Co2 Co3 oo Qo1 | o2 do3
€10 €11 | €12 €13 10 d11 | d12 413
C0 €21 | €22 €23 (oo d21 | d22 d23
C3p €31 | €32 €33 30 d31 | d3z2 433

Cio Cu Ay A

47

— Multiplication
--- Addition

/* (1) */
/* (2) */
/* (3) */
/* (4) */
/* (5) */
/* (6) */
/* (1) */
/* (8) */

Boo Boy
boo  bo1 | Doz bos
bio bi1 | b2 bis
bao b1 | Doz bos
bso D31 | b3z bas

Bio By




COOO = A00 x Boo
Cloo = A01 x Bio

0 aooboo + ao1b1o  @oobor + ap1b11
00
a10boo + a11b10  a10bor + @11b11

1o — ao2bao + aosbso  @op2bar + aosbsy
00
a12b20 + a13b30  a12b21 + aq3b3;

Thus, COOO ‘I’ Cloo

aooboo + @01b10 + @o2ba0 + aosbso  @oobor + ao1b11 + ao2bar + aosbs:
a10boo + a11b10 + a12b20 + a13bs0  @10bor + a11b11 + a12b21 + a13bs,

Important: this is block processing.

Avoiding extra memory requirements and including data dependence

mat mul sum(aA, B, C, s) /* C = AXB + C */
/* A, B: operands */

/* C : result */

/* s : matrices (square) size */

{

if (sequential multiplication)

{
}

else

{

C = AXB + C;

mat_mul_sum(d , B , C ., s/2); /* (1) */
mat_mul_sum(AM, Bw, Cm, s/2); /* (2) */
mat_mul_sum(AM, B, C.» s/2); /* (3) */
mat_mul sum(A _, B , C _, s/2); /* (4) */
mat_mul_sum(A , B , C , s/2); /* (5) */
mat_mul_sum(Au, B, C.. s/2); /* (6) */
mat_mul_sum(Am, B, C.» s/2); /* (7)) */
mat_mul_sum(An, B., C., s/2); /* (8) */
rassen’s Method (works? flop count?
St ’s Method ks? flop 7
P=A +A |X(B +B )
0 00 11 00 11 A
P=(A +A |]XB A | A
1 10 11 00 00 01
P2= Aoox {Bo1_ Bn) AIO An
P=A X[B -B)
3 11 10 00 B
P4 = (AOO + AOl) XBll BDD BOl
P=(A -A)X[B +B)
5 10 00 00 01 B B
P=(A -A|X[B +B ) ol
6 01 11 10 11
C =P +P -P +P C
00 0 3 4 6 C C
_ 00 01
C01 = P2+ P4
C1o = P1+ P3 C1o C:‘11
C =P +P -P +P
11 0 3 1 5
a) Computing with submatrices b) Matrix Partition
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10.2 Matrix Multiplication on Multicomputers

On distributed memory parallel computers: basically Cannon & Fox. However,

1 12

o o

= Cycle delay

20 11 02

b
|:| Processing element bm o

00

n n
&, a, 3
2, e, 2 " "

B Becond step h

o
n

) First step

o
al?
al? a-||
Ij__l % % T By
Bt o Cro =80 Bpa T8y % B,y

3 2
c 1] =i s} * lj oo I::'IIII = El[]D * t]DI

The most common interprocessor network
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Cannon: relocation a

nd shifts

a a b b b b
00 00 01 01 02 02 00 00 01 11 02 22
c c c c c
00 01 02 00 01 02
b a b b b b
10 10 11 11 12 12 11 10 12 21 10 02
c c c c
10 11 12 10 11 12
a b b b a b b
20 20 21 21 22 22 22 20 20 01 21 12
c c c c c c
20 21 22 20 21 22
a) Initial Distribution a) Initial Alignment
Fox: broadcast and shift
! J’ 1 T !_ T
a b a b a b a b a a b a b a b a b
oo [nx] [x]] [u]] o2 m IZCIII:II:CI DI“JDI I:ﬂ“:ll:ﬂ I:Cl“:ll:cl DI||:|DI I:ﬂ“:ll:ﬂ
‘o o “ C e Lo L Cro T Cra
| I 1
L a a_ h a a_h a B a a_ b
[1s} 10 I I 13 13 IDII:IIEI “||:|” ”||:|” IDII:IID ”||:|” ”||:|”
o T i Cio Ty Tz Cio Ty Cia
| 4 ] | |
a B a a a a H a h a h
o plil 1l k1l n n n pn k1l AU n n ?DIIJID ?IIIJII 1?“]??
l:'u:- c'u 2 ':I'all:iI ':I'all:l ':I'al'z:l o Cu Cn
- - (-
“:'—a X by I:'—a by e “:'—a b,
[1§]
':ID_E'IIXE'IDF Cll_allx}:lllr | _allx}:ll!
L] . .
Can = 7 % by '31|=a'u><b1|= '3n=a'u><bn
4] Broadcast b Local compting ) Shift
‘ [ i
a h 4 a h a a a a W a b a b
oo 11 [x]] I o2 12 oo o [nl] I o2 12 oo [1s} [x]] I [xr] 17
I I I 1) 1) 17 173 I3 17
I:I:l:l I:I:ll "] I:III I:I:ll cm I:III l:I:ll l:I:ﬂ
I 1 ]
a_ h a 5 a a a a a
o i I U [ir] 1 1=} o I k1l [ir] 1 o o I U 12 i
Iy I I 2] ) 1] 1) 1) Rl
I:Il:l I:II EI? I:Il:l I:II EI? I:Il:l I:II EI?
[ il 1
I & a b a_ b a b a a_ b a b a b a b
o oo kdl ol n om 0] oo k1 ol n om in) oo kil ol 7 o2
2 I cl 12} 1 oy 12] 1] 17
an Ca L “an Ca Cn Can T Ca
| | L
I7_ R ] 1 o)
Cpo= Cpntag % byg; EDI_EDI+aDIXhII= Cpp= Cpq+ g % by
|?J 1 . __ I o
=Cpt+a,.% by c,,—c,,+a,1><h1,, Cj= g+ a,7% biyq
I1__ I -t} [LN] ) 1
'an_':'zn+&'z|:-x hu:-: ':'u_':'u'l'ﬁznx hl:-l: ':n_':u"'amx}:'
4] Broadrast b Local compating a) Bhift
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Three dimensions and more: DNS (data replication)

kL0 0
/0 0 O ]
HNEN) P []

a) Processors identification. b) Distribution of columns of A. c) Broadcast by Planes.

10.3 Matrix Multiplication on Clusters

Some previous work first, which is based on previous algorithms for multicomputers.
Later, the specific proposal for (Ethernet-interconnected) clusters.

10.4 Matrix Multiplication Already Proposed for DMPC (and
Clusters)

PUMMA-SUMMA-DIMMA (MMA: Matrix Multiplication Algorithm). SUMMA: Scal-
able Universal MMA, almost directly used in ScaLAPACK. Taking into account “two-
dimensional block cyclic decomposition” is losely based on Fox’s algorithm and losely
resembling Cannon’s algorithm data communication pattern. Data distribution:

A 0 1
alalalalalala
00 01 02 03 04 05 06 07
0
alalalalalala
10 11 12 13 14 15 16 17
alalalalalalala
20 21 22 23 24 25 26 27
alalalalalala 1
30 31 32 33 34 35 36 37
alalalalalala
40 41 42 43 44 45 46 47
alalalalalalala
50 51 52 53 54 55 56 57 2
alalalalalalala
60 61 62 63 64 65 66 67
70 a.71 a'72 a73 a'74 a.75 a'76 a'77 Pr ocesors

The resulting matrix distribution is
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A 0 1

a a a_ a a a_a_a
00 a01 aoz a03 a04 aos a06 a07 00 02 04 06| 01 03 05 07

Ola_a_a a |la a_a_a
30 32 34 36 31 3 3B 377

alo 11 a12 13 a14 15 a16 17
aGO aGZ a64 a66 aGl a63 a65 a67

2 (=Y 2 [aY
a,8,8,8, 2 a8 8,

)

[¥)

o
1))

)

o
1))

)

L
)

oD

o

alalalal|alala|la lla a a a |[&a_a &
30 31 32 33 34 35 36 37 40 42 44 46| 414345 47
a a _a_a a_a_a_a_
a1 a a a = Al = 40 72 74 76 7173 75 77
40 —41 42 z 44 15 46 2
a8 = 8 g allalald
50 5P B 56 2 MR P12
allala  d

a | a a |(a |a a |a
60| 61| 62 63| 64| 65 66 | 67

70 d"1 a'72 = a74 = a76 duw Procesors

iy
¢

SUMMA in pseudocode (assuming k is the “common” index, columns of A and rows of
B) without blocking:
for(i =0; 1 < k ; 1i++)
{
Send k-th column of A in a row broadcast
Send k-th row of B in a column broadcast
Multiply k-th column by k-th row

which uses broadcasts as Fox’s algorithm.

The iterations on processor 0:

boo  boz  bos  bos bio b1z by bis
(0) (0) (0) (0) (1) (1) (1) (1)
—_ aogg | € & & & - apgr | € & & &
Broadcastsg ?8) ?3) ?5‘) ?8) Broadcasts; ??) ?12) ?f) ?f)
a3p | €39 €32 C34 C36 Azl | C3g C32 C34 Cszg
0 0 0 0 1 1 1 1
aeso Céo) Céz) Cé4) Cées) ael Céo) Céz) Cé4) Cées)
bao iz bas by bso b3z bss bz
2 2 2 2 3 3 3 3
B d—> ' Qo2 Céo) Céz) 084) 086) B ? ' Qo3 Céo) Céz) 084) 086)
roaacasts; (2) (2) (2) (2) roaacastss (3) (3) (3) (3)
a3z | €39 €33 C34 C36 a3z | C3g C32 C34 Cs3g
2 2 2 2 3 3 3 3
ae2 Céo) Céz) Cé4) Cées) ae3 Céo) Céz) Cé4) Cées)
bio  baz  bas  byg bso  bsz  bsa  bsg
1 1 1 1 5 5 5 5
B d—> ' Qo4 Céo) Céz) 084) 086) B ? ' aos Céo) Céz) 084) 086)
roaacastsy (4) (4) (4) (4) roaacastss (5) (5) (5) (5)
Q34 | C39 €33 C34 C3¢ a3s | C3g  C32 C34 Cs3g
4 4 4 4 5 5 5 5
aeq Céo) Céz) Cé4) Cées) aes Céo) Céz) Cé4) Cées)
bso  bsz bes  bes bro b7z bra  brs
6 6 6 6 7 7 7 7
B d—> ' Qos Céo) Céz) 084) 086) B ? ' Qo7 Céo) Céz) 084) 086)
roaacastse (6) (6) (6) (6) roaacastsr (7) (7) (7) (7)
G36 | C3p C32 C34 Cgg G37 | C3g €32 C34 Cag
6 6 6 6 7 7 7 7
aes Céo) Céz) Cé4) Cées) aer Céo) Céz) Cé4) Cées)

And this is the final result.

(1) Focusing on granularity and local processing performance, matrix blocks or subma-
trices are used instead of single elements: x;; — X;;. It is not very clear how to define
block size (combination of local computing performance and granularity).
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(2) Focusing on static interconnection networks (classical on traditional multicomputers),
broadcasts are not easily implemented (poor performance is expected a priori). Broadcasts
are transformed into (and the whole algorithm) multiple and pipelined point-to-point
messages through the ring of columns or rows.

¢ (v [

Poo P01 C Poo P01 ) Poo P01

P P P P P P
10 11 C 10 11 10 11
[ [
P » P P P P P P P
20 v 21 20 21 C 20 21 20 21

which resembles Cannon’s algorithm.

(3) Focusing on delays produced by the effect of pipelining (note the time at which
the first column of processors could send the first message of it’s second and third col-
umn block), the concept of LCM(P, Q) (Least Common Multiple) is used in DIMMA
(Distribution-Independent MMA) and P/Q ratio. DIMMA also defines explicit algorith-
mic rearrangements depending on k., and k;, (which is the first one in recognizing there
is a difference).

An this algorithm is used in ScaLAPACK (PBLAS, more specifically).
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