
A GPU Approach to Fortran Legacy Systems

Mariano Méndez, Fernando G. Tinetti∗

III-LIDI, Facultad de Informática, UNLP
50 y 120, 1900, La Plata

Argentina

Technical Report PLA-001-2012†

October 2012

Abstract

A large number of Fortran legacy programs are still running in production environments, and most
of these applications are running sequentially. Multi- and Many- core architectures are established
as (almost) the only processing hardware available, and new programming techniques that take
advantage of these architectures are necessary. In this report, we will explore the impact of applying
some of these techniques into legacy Fortran source code. Furthermore, we have measured the impact
in the program performance introduced by each technique. The OpenACC standard has resulted in
one of the most interesting techniques to be used on Fortran Legacy source code that brings speed
up while requiring minimum source code changes.

1 Introduction

Even though the concept of legacy software systems is widely known among developers, there is not a
unique definition about of what a legacy software system is. There are different viewpoints on how to
describe a legacy system. Different definitions make different levels of emphasis on different character-
istics, e.g.: a) “The main thing that distinguishes legacy code from non-legacy code is tests, or rather a
lack of tests” [15], b) “Legacy Software is critical software that cannot be modified efficiently” [10], c)
“Any information system that significantly resists modification and evolution to meet new and constantly
changing business requirements.” [7], d) “large software systems that we don’t know how to cope with but
that are vital to our organization. ”[4]. Thus, some legacy systems’ characteristics are [13]

1. The software resistance to change.

2. The inherent complexity.

3. The crucial task performed by the software in the organization.

4. The system size, generally medium or large.

In the specific case of Fortran, there is software that has been running in production environments for
20 or 30 years. Throughout this period, software gradually deteriorates and it may need different types
of changes, such as: enhancements, corrections, adaptations and preventions. All of these tasks require
knowledge and comprehension of the system. In the multi-core and many-core era, software changes
become more and more complex. In this article we will explore one side of the complexity that involves
the parallelization of a legacy software by using GPU (Graphic Processing Units) devices. In order to
achieve that, we will focus on advantages and disadvantages of these programming techniques to be
applied on a Fortran legacy system.

∗Investigador Comisión de Investigaciones Cient́ıficas de la Prov. de Bs. As.
†PLA: Parallel Linear Algebra

1

2 Fortran Legacy Systems

Fortran is one of the most long-lived programming languages used by scientists all around the world. It is
considered the first high level language, it was born in 1954 [1]. This fact makes Fortran a programming
language which has millions of source code lines already written. It became very popular specially
in two fields, scientific programming and High Performance Computing (HPC), both closely related. In
addition, due to its long-life, Fortran has gone through a particular standardization process in which each
previous version of the standard is compliant with the current one [14]. This standardization process
makes a FORTRAN 77 program still compilable with modern Fortran 2008 compilers. All these features
help Fortran language to be, even today and contrary to the popular belief, in a solid and well defined
position. Nowadays, there is a big set of Fortran programs running in the production environment of
Universities, Companies and Governmental institutions. Some good examples can be seen in programs
like climate models, earthquake simulations, magnetohidrodynamics simulation, astronomical software,
quantum physics software, quantum chemistry software, and so forth. Most of these programs have
been programmed years (or decades) ago and their users need them to be modernized, improved and/or
updated. Modernizing this kind of programs also implies making them capable of taking advantage of the
modern processors’s architecture and, specifically numerical processing facilities. The modernizing and
parallelization process/es is/are still far away from being performed automatically, due to the complexity
associated to it/them. One task that is complex to achieve regarding the automation lays in the fact that
today there is not tool capable of automatically parallelizing a sequential program.

3 Multi-core Architecture

Hardware manufacturers were able to improve microprocessors’ performance almost continuously by com-
bining technological and architectural design enhancements. The multi-core era was officially acknowl-
edged by 2004/5, even when the trend could be noted some years before [9] and, in fact, the first multi-core
design was released by IBM in 2001: the POWER4 processor [2]. Nevertheless, the architectural improve-
ment implied by multi-core building has it own set of bottlenecks. One of the most important problems
that chip-makers found was power consumption, or the power wall. The Intel Pentium 4 processor almost
reached 100 watt per cm2, this fact made Intel interrupt its Pentium 4 production. Even while Moore’s
Law was still valid, reality brought the heat level processors close to that of a nuclear reactor. Another
drawback is the fact that while transistors ran faster, wires got slower this is known as ”The wire delay
problem”. Other problems are not specifically hardware/design related but strongly affect performance,
such as the one referred to as the ”Memory Wall” problem. More specifically, if one core is several orders
of magnitude faster than memory, the difference will be proportionally worse when several cores share
(access) the same memory.

Finally, one relevant aspect to include is the fact that in these days most of prior existent programs
do not use the multi-core parallel capabilities of the multi-core chips. Even when compilers have been
improved, they are not able to rewrite or transform sequential programs into the corresponding parallel
versions of them. They are capable of improving programs by applying, for example, instruction level
parallelism, but introduction of automated multi-core parallelism is at a very early stage of development.

4 NVIDIA/CUDA Many-core Architecture

Many-core architecture is used for describing the environment/processor design where several hundreds
or thousands of small cores compute in parallel, as a different approach of that taken by multi-core
designs involving a small set of complex cores (2, 4, 6, 8) [5] [23]. As a result of this approach, an
extremely good performance has been achieved within reasonable power consumption rates. The idea
that underlies many-core architecture is that even when simple processors are slower (e.g. 3 times slower
than a complex processor) they simple processors are more than ten times smaller than complex ones so
the total throughput of many-core processors outperforms that of the more complex processors. These
days, one of the most illustrative examples of many-core architectures is the so called GPGPU (General-
Purpose Graphics Processing Units) which aims to utilize graphic processing units, commonly focused
on computer graphics, to perform computation on programs managed by a central processor unit(CPU)
[6, 18]. In 1999, the NVIDIA Gforce 256 was released, and it was “a single-chip processor with integrated
transform, lighting, triangle set up/clipping, and rendering engines that is capable of processing a mini-
mum of 10 million polygons per second”. NVIDIA 256 had a graphic pipeline architecture, configured as

2

follows: Pixel shader, Vertex shader, a Texture mapping unit, and Render Output unit. Its precise core
configuration was 4,0,4,4 respectively [17, 18, 11]. The next big advance in GPU architecture arrives on
the hands of G80 based on the unified shader architecture. This architecture supports the unified shader
model which consists of the same instruction set used for any kind of shader, as shaders can read from
data buffers, textures and perform the same arithmetic operation. Basically, a GPU is composed of a
set of Streaming Processors (SP) organized in Streaming Multiprocessors (SM). Each SM include several
Special Function Units (SFUs) as shown in Fig. 1. Several SMs, in turn, are grouped in independent
processing units called Texture/Processors Clusters (TPC) [11], as shown in as shown in Fig. 2. The
streaming processor array (SPA) is located at the higher level of the GPU grouping a set of TPC, as
shown in Fig. 3.

Figure 1: Streaming Processor

Figure 2: Texture/Processors Clusters from a G80 GPU and GT200

Figure 3: A Streaming Processor Array from a G80 architecture

Due to the fact that the world of real-time and high definition 3D programming has traditionally
required advanced computational power, the Graphic Processor Unit acquired highly parallel, multi-
threaded, manycore processor capabilities. Thanks to the graphic rendering nature and throughout time,
GPU has specialized in compute-intensive and highly parallel computation rather than CPU, which has
evolved to control flow and caching data [18]. Chip area devoted to processing as compared to control
and data cache/s in each processor show this trend.

3

5 CUDA and Using CUDA in a Fortran Program

The first implementation of the initially defined as Compute Unified Device Architecture (CUDA) [8]
was introduced by NVIDIA in 2006. CUDA was developed based on a new parallel programming model
and on a new instruction set architecture [18]. It has represented a completely new concept in GPU
programming. In the very early stages of GPU programming, programmers should develop the programs
in assembler, requiring a very specific knowledge of the hardware they used [3]. Since 2006, with the
advent of CUDA, GPU programming has become less and less complex. Since 2006, CUDA programming
can be implemented, for example, using the C programming language. In 2009, the first version of CUDA
Fortran was released by the Portland Group (PGI) Fortran compiler [12]. One of the most relevant aspects
about CUDA is the parallel granularity found in the GPU computing model, basically organized into three
levels [17]:

• Thread Level: a single sequence of (instructions’) execution. A single SP is used for thread execu-
tion. GPUs are not meant for this kind of processing but, instead, used the thread as the underlying
building block for parallel execution.

• Block Level: a set of threads is grouped in blocks, i.e. executed concurrently. Threads in a block
are able to use a shared memory (intra SM as shown in Fig. 1) and can be synchronized. Blocks
are identified with a block ID.

• Grid Level: an array of blocks is identified as a grid which executes the same code (or kernel).
Blocks in a grid share global memory, which is shared by every TPC (such as those shown in Fig. 2
and Fig. 3)

Different organizations or definitions of code to be executed in threads (i.e. kernel code), number and
organization of threads in a block and number and organization of blocks in a grid will provide a wide
range of performance results. As a matter of fact, defining the processing architecture independent of the
graphic pipeline as explained in the previous section has been (maybe the first) part of the decision in
order to provide CUDA-enabled GPUs. On the software side, the general purpose programming model
and API (Application Programming Interface) to provide access to processing capabilities (along with
the corresponding runtime) is also defined by CUDA specifically designed for programmers and general
purpose parallel processing.

NVIDIA and The Portland Group (PGI) have developed a CUDA Fortran Compiler [19] which, in
fact, includes three levels of CUDA programming:

• CUDA Fortran as implemented by the PGI compiler, which is almost identical to that of CUDA
C, but taking advantage of the Fortran type (and, in general, entity) attribute [30] which is defined
by the Fortran standard since Fortran 90.

• CUDA Kernel Loop Directives, also defined by the PGI Fortran compiler to be applied directly on
Fortran do loops, so the compiler automatically generates CUDA kernels. Kernel Loop Directives
are very similar to OpenMP worksharing loop construct [22].

• OpenACC directives [21], which are not directly part of CUDA programming but provides access
to CUDA-enabled GPUs via a complete set of directives similar to those defined by the OpenMP
specification.

The following subsections briefly describe each type of access to CUDA-enabled GPUs and related spec-
ifications/definitions.

5.1 CUDA Fortran

To port a legacy program to CUDA processing much of (the compute-intensive) source code has to be
modified. Usually, the necessary changes that need to be made to an original program to be run in a
GPU can be summarized as:

• GPU memory allocation: as a first step those data structures that will be used to compute in the
GPU must be allocated from the host, e.g.:

4

...
integer, allocatable, device :: a_d(:,:), b_d(:,:), c_d(:,:)
...
allocate(a_d(row,col))
allocate(b_d(row,col))
allocate(c_d(row,col))
...

the first line indicates that these data structures will be allocated in the GPU by using the device
keyword.

• Host ↔ GPU data transfers are handled directly by assignments. The compiler figures out ac-
tual transfer (either from host memory to GPU memory or from GPU memory to host memory)
according data declarations with or without the device keyword.

...
integer, allocatable, device :: a_d(:,:), c_d(:,:)
integer, allocatable, :: c(:,:)
...
allocate(a_d(row,col))
allocate(c_d(row,col))
allocate(c(row,col))
...
a_d = a
...
c = c_d
...

where, a_d = a implies a host memory to GPU memory data transfer and c = c_d implies a GPU
memory to host memory data transfer.

• The CUDA Kernel: the most important CUDA structure, the CUDA Kernel, must be programmed
as a subroutine by using CUDA internal structures/data such as blockIdx, blockdim, threadIdx,
and so forth. One CUDA Kernel example is listed bellow:

attributes(global) subroutine matrix_mul(a, b, c, row, col)
implicit none
double precision, intent(in) :: a(row,col), b(row,col)
double precision, intent(out) :: c(row,col)
integer, value :: row, col

integer, device :: cij
integer, device :: k, ix, iy

ix = (blockIdx%x-1) * blockdim%x + threadIdx%x
iy = (blockIdx%y-1) * blockdim%y + threadIdx%y

cij = 0.0d0

do k = 1, row
cij = cij + a(k,ix)*b(k,iy)

end do
c(ix,iy) = cij

end subroutine matrix_mul

It is worth noting that a kernel function directly defines what a single thread will compute in a
single SP (of those shown in Fig. 1). Also, note the use of the attribute value for arguments row
and col so that each thread has its own copy of the values for those arguments.

5

• GPU Block Grid Size and organization: The GPU parallel model requires the specification of the
number and organization of threads grouped in a block that can cooperate by using shared memory
(intra SM, see Fig. 1) or by synchronizing their execution. The number of threads in a block is
referred to as the Block Size, and the threads can be organized in 1, 2, or 3 dimensions [24]. The
number and organization of blocks has to be given each time a kernel is launched, and the number
of blocks of threads is referred to as Grid Size. Blocks can be arranged in 1, or two dimensions [24].
At runtime, each CUDA Kernel launches a grid of thread blocks, i.e. the grid of thread blocks is
launched by invoking the corresponding kernel function with the values

<<<Grid Specification, Block Specification>>>

such as in

...
GridSpec = dim3(row/10,col/10,1)
BlockSpec = dim3(10,10,1)
...
call matrix_mul<<<GridSpec,BlockSpec>>>(a_d,b_d,c_d,row,col)
...

One of the most clear disadvantages of Fortran CUDA Programming from the legacy source code point
of view lays in the number of changes that need to be introduced. Most (if not all) of these changes
can be considered critical, since they have to be made to the compute intensive fraction of code which is
executed most of the runtime.

5.2 CUDA Kernel Loop Directives

PGI CUDA Fortran supports automatic kernel generation and invocation by using directives associated
to one or more host tightly nested loops [30] [24]. These directives must be used before the loop/loops
so that the code will be processed (in parallel) in the GPU. In the simplest form, the programmer just
indicates that the following do(s) (the ourtermost, by default, or the outermost n loops if n is given in
the directive) should be a kernel call, and the compiler generates the kernel, and kernel call including
grid and block definitions. The PGI Fortran CUDA Kernel Loop Directives (KLD) syntax is given as

!$cuf kernel do[(n)] <<< grid, block >>>
which could be used directly as

!$cuf kernel do <<<*, *>>>
do ...

so that the compiler will define the kernel, grid, and block details/values of the do loop immediately
following the directive. Grid and block specifications can be given as integer scalar values or as paren-
thesized list/s. KLD avoid explicit definition of kernel subroutines in the source code. Thus, KLD imply
less legacy source changes/adaptations than the previous method (using plain CUDA Fortran), but loops
on which this directive can be applied have a number of restrictions [24] such as

• If the directive specifies n, it must be followed by at least that many tightly-nested loops.

• The (tightly-nested) loops in the scope of the directive must have invariant loop limits: the lower
limit, upper limit, and increment must be invariant with respect to any other loop in the kernel do.

• There can be no GOTO or EXIT statements within or between any loops that have been mapped
onto the grid and block configuration values.

• The body of the loops may contain assignment statements, IF statements, loops, and GOTO
statements.

• Only CUDA Fortran dataypes are allowed within the loops.

• CUDA Fortran intrinsic functions are allowed, if they are allowed in device code, but the device-
specific intrinsics such as syncthreads, atomic functions, etc. are not.

• Subroutine and function calls to attributes(device) subprograms are allowed if they are in the same
module as the code containing the directive.

• Arrays used or assigned in the loop must have the device attribute.

6

• Implicit loops and F90 array syntax are not allowed within the directive loops.

• Scalars used or assigned in the loop must either have the device attribute, or the compiler will make
a device copy of that variable live for the duration of the loops, one for each thread. Except in the
case of reductions; when a reduction has a scalar target, the compiler generates a correct sequence
of synchronized operations to produce one copy either in device global memory or on the host.

Even when the source code will not include kernel subroutines like that in the previous subsection,
specified with attributes(global), a source legacy code should clearly adapted in order to fulfil the
(rather large/strong) number of requirements of KLD. Summarizing, using KLD imply:

• Changes on legacy source code are made in loops, which are automatically compiled as kernels by
the PGI Fortran compiler.

• Changes on legacy source code are, in some way, identified/defined by the restrictions under which
KLD can be used.

• Grid and block specifications can be handled by the compiler/runtime or can be explicitly defined
by the programmer.

• Loop kernel code is relatively constrained to that required by the KLD, i.e. not all the CUDA
routines/facilities are allowed to be used in KLD-related code.

Thus, KLD can be considered a step further in making simpler and less aggressive legacy source code
changes/adaptations at the cost of constraining the code to be executed in CUDA kernels (generated by
the PGI compiler).

5.3 OpenACC Directives

OpenACC [21] is a standard developed by Cray, CAPS, NVIDIA, and PGI [16]. This programming
standard was created for parallel computing development to make the parallel programming on hetero-
geneous CPU-GPU systems. OpenACC focuses in the concept of “directives” or code annotations just
like KLD, but OpenACC directives are intended to be used directly on existing (including legacy) source
code. While KLD restrictions imply, for example, to define device data for usage in !$cuf ... direc-
tives, OpenACC directives are hints provided by the programmer to the compiler, in which regions of
source code are identified to be parallelized, without requiring the programmer to modify or adapt the
underlying code itself. The use of the directives allows the compiler to perform the tasks to map the
computations that will be executed in the host and those that will be performed by the GPU. These
code annotations in the case of OpenACC are very similar to those adopted by OpenMP. The compiler is
notified via the annotations or directives that a region of source code should be accelerated/parallelized
by using a GPU. Once the compiler finds a directive, it is in charge of mapping data structures to the
device, generating the kernel section, specifying thread block the block grid, transferring data between
host and device/s, and finally generating the compiled version of the code that will run partially in the
host and partially in the device. The programmer only is requierd to write the directive into the legacy
source code.

It seems to be the ideal programming model to be used on legacy programs. In Fortran, OpenACC
directives are included as comments. This offers two advantages, (i) the program can be compiled with
a compiler that does not conform to OpenACC and it will still work, and (ii) changes introduced in the
source code will not impact directly on the current program functionality granting that no new bugs will
be added to the software. There are several types of OpenACC directives, referred to as “PGI Accelerator
Directives” in [25], such as

• Accelerator Compute Region Directive, which is syntactically defined as

!$acc region [clause [, clause]]
structured block

!$acc end region

which could be directly related to kernel code as defined above: code to be executed in a GPU
device.

• Accelerator Data Region Directive,which is syntactically defined as

7

!$acc data region [clause [, clause]]
structured block

!$acc end data region

which is used for handling data in the device memory. Here, handling refers to device memory
allocation as well as data movement between device and host memory.

The relationship/similarity with OpenMP directives is clear starting at the syntax. In general, every type
of accelerator directive is related to compute and/or memory handling in a device (GPU).

6 Evaluation on a Matrix Multiplication Example

In order to study how CUDA programming and PGI KLD and accelerator directives impact into Fortran
Legacy Code, an initial and very simple program has been selected. The selected example is a simple
matrix multiplication program, as that shown in Fig. 4, where we have hardcoded the matrix size, n, and

program matmul
use modmm
implicit none

integer :: n
double precision, allocatable :: a(:,:)
double precision, allocatable :: b(:,:)
double precision, allocatable :: c(:,:)

n = 4000

allocate(a(n,n))
allocate(b(n,n))
allocate(c(n,n))

! initialize matrices
call initmat(a, n, 1d0)
call initmat(b, n, 1d0)
call initmat(c, n, 0d0)

! c = a x b
call mm(a, b, c, n)

! check result
call chkval(c, n, dble(n))

deallocate(a)
deallocate(b)
deallocate(c)

end program matmul

Figure 4: Example Matrix Multiplication Main Program

we have used a Fortran module in order to reduce the number of lines of code necessary for the example
program. Module modd includes subroutines initmat, mm, and chkval as shown in Fig. 5, where:

• initmat and chkval are not expected to be very useful routines, since they are specifically imple-
mented for the tests to be carried out in this report.

• Clearly, there are better matrix multiplication algorithms and optimizations to be applied, but
legacy code does not necessarily includes such enhancements.

• Specifically, the routine mm computes c = axb + c where a, b, and c are nxn element matrices.

8

module modmm

contains

!!

subroutine initmat(m, n, val)

implicit none

double precision :: m(n,n), val

integer :: n, i, j

do i = 1, n

do j = 1, n

m(i,j) = val

end do

end do

end subroutine initmat

!!

subroutine mm(a, b, c, n)

implicit none

double precision :: a(n,n), b(n,n), c(n,n)

integer :: n, i, j, k

! making the product

do i = 1, n

do j = 1, n

do k = 1, n

c(i,j) = c(i,j) + a(i,k)*b(k,j)

end do

end do

end do

end subroutine mm

!!

subroutine chkval(m, n, val)

implicit none

double precision :: m(n,n), val

integer :: n, i, j

do i = 1, n

do j = 1, n

if (m(i,j) /= val) print *, "diff. at", i, j

end do

end do

end subroutine chkval

end module modmm

Figure 5: Module Including a Simple Matrix Multiplication Routine

We will use the code of Fig. 4 and Fig. 5 as a departure point in order to evaluate:

• The number/scope of necessary changes necessary in source code to take advantage of PGI CUDA
Fortran, KLD, and accelerator directives.

• The performance gains obtained in a specific platform (PC + NVIVIA GPU).

The computer used for the experiments is shown in Table 1, which can be considered a standard Linux
installation in current PC hardware, adding the PGI Fortran compiler. The PC has two Tesla 2075 GPU

Processor i5-2310 CPU @ 2.90GHz
RAM 16 GB
OS Linux 3.2 64 bits
Compiler pgfortran 12.5-0 64-bit

Table 1: GPU Host Computer Characteristics

cards, with the main characteristics shown in Table 2 as obtained via the command pgaccelinfo (also
provided by the PGI compiler installation)

9

Device Name Tesla C2075
Device Revision Number 2.0
Global Memory Size 5636554752
Number of Multiprocessors 14
Number of Cores 448
Total Constant Memory 65536
Total Shared Memory per Block 49152
Registers per Block 32768
Warp Size 32
Maximum Threads per Block 1024
Maximum Block Dimensions 1024, 1024, 64
Maximum Grid Dimensions 65535 x 65535 x 65535
Clock Rate 1147 MHz
...
Initialization time 5137572 microsec

Table 2: NVIDIA Tesla C2075 Characteristics

The matrix multiplication program of Fig. 4, using the specific code for matrix multiplication given in
Fig. 5 was compiled with pgfortran -fast. Fig. 6 shows the runtime as measured and reported by the
time command. Having defined the most important details of CUDA Fortran, Kernel Loop Directives,

real 0m37.769s
user 0m37.490s
sys 0m0.144s

Figure 6: Runtime of the First Matrix Multiplication Program

and OpenACC Directives, we will use those facilities in order to analyze necessary changes as well as
performance obtained with each one of them.

6.1 CUDA Fortran

Clearly, only the routine mm (Fig. 5) should be affected by including CUDA Fortran processing in the
source code. We can describe changes in terms of data and processing. New (device) data is necessary in
order to hold the initial values of matrices a, b, and c, as well as to hold the new values of c, computed
in the GPU. The new matrices, their allocation and initialization can be almost directly written in the
original source code of subroutine mm as

! Data to be allocated in the GPU
double precision, allocatable, device :: a_d(:,:)
double precision, allocatable, device :: b_d(:,:)
double precision, allocatable, device :: c_d(:,:)

...

! Allocate and initialize matrix data in GPU
allocate(a_d(n,n))
allocate(b_d(n,n))
allocate(c_d(n,n))
a_d = a
b_d = b
c_d = c

Given that there is no more to be computed in the host, the only remaining task is launching a grid
of blocks (and threads) so that the result is computed in the GPU. Assuming there is a kernel routine
cudamm implemented, the following code implies:

1. Create a grid of n/10 x n/10 thread blocks. This kind of expressions for defining grids is relatively
usual, since directly implies that blocks are defined as being of 10 x /10 threads.

10

2. Threads in a block are arranged in a bidimensional array of size 10 x /10, as previously explained.

3. The result is copied in host memory (the last assignment).

! Set grid and block specification
gridspec = dim3(n/10, n/10, 1)
blockspec = dim3(10, 10, 1)

! Kernel call
call cudamm<<<gridspec, blockspec>>>(a_d, b_d, c_d, n)

! Get the result from GPU memory
c = c_d

Thus, the complete mm subroutine can be given as in Fig. 7. Note the line with use cudafor which is

use cudafor

...

! This subroutine does not compute, just calls the kernel

! and handles memory transfers

subroutine mm(a, b, c, n)

implicit none

double precision :: a(n,n), b(n,n), c(n,n)

integer :: n

! Data to be allocated in the GPU

double precision, allocatable, device :: a_d(:,:)

double precision, allocatable, device :: b_d(:,:)

double precision, allocatable, device :: c_d(:,:)

! Grid and Block definitions

Type(dim3) :: gridspec, blockspec

! Allocate and initialize matrix data in GPU

allocate(a_d(n,n))

allocate(b_d(n,n))

allocate(c_d(n,n))

a_d = a

b_d = b

c_d = c

! Set grid and block specification

gridspec = dim3(n/10, n/10, 1)

blockspec = dim3(10, 10, 1)

! Kernel call

call cudamm<<<gridspec, blockspec>>>(a_d, b_d, c_d, n)

! Get the result from GPU memory

c = c_d

end subroutine mm

Figure 7: Subroutine Including a Call to a CUDA Kernel Matrix Multiplication Routine

specifically needed in this example for the definition of dim3 which, in turn, is necessary in the gridspec
and blockspec declarations. In the kernel routine, cudamm, the two outermost loops of the original mm
subroutine of Fig. 5 are replaced by references to thread location in the grid of threads, i.e. each thread
will compute a single element of matrix c, and threads take into account its location in the grid and
block. The kernel routine is given in Fig. 8.

11

attributes(global) subroutine cudamm(a, b, c, n)

implicit none

double precision, device :: a(n,n), b(n,n), c(n,n)

integer, value :: n

integer :: k, ix, iy

ix = (blockIdx%x-1) * blockdim%x + threadIdx%x

iy = (blockIdx%y-1) * blockdim%y + threadIdx%y

do k = 1, n

c(ix, iy) = c(ix, iy) + a(k,ix)*b(k,iy)

end do

end subroutine cudamm

Figure 8: CUDA Fortran Kernel Matrix Multiplication Routine

At this point, we are able to build a complete CUDA Fortran matrix multiplication program including
a CUDA kernel matrix multiplication routine, as shown in Fig. 9, where:

!===

module modmm

use cudafor

contains

!!

subroutine initmat(m, n, val)

...

end subroutine initmat

!!

! This subroutine does not compute, just calls the kernel

! and handles memory transfers

subroutine mm(a, b, c, n)

...

end subroutine mm

!!

attributes(global) subroutine cudamm(a, b, c, n)

...

end subroutine cudamm

!!

subroutine chkval(m, n, val)

...

end subroutine chkval

end module modmmcuda

!===

program matmul

...

end program matmul

Figure 9: Complete Program Including a CUDA Kernel Matrix Multiplication Routine

• Subroutines initmat and chkval are those given in Fig. 5.

• Subroutines mm and cudamm are those given above in this section.

• The main program remains unchanged (from that of Fig. 4) since changes are completely contained
in modmm.

The complete source code is given in Appendix A. It could be argued that it is unlikely that functions
to be changed/transformed to use CUDA are already contained in modules, but we think there are some
previous tasks that need to be performed before dealing with several optimization and parallelization
work [27]. Several tasks, such as including functions in modules is not easy, since those functions could
use Fortran common (global) data, but such work will provide better and more manageable software. And
this is the kind of work we are engaging in with legacy source code.

The program has to be compiled (at least) with flag -Mcuda so that the compiler recognizes CUDA-
related source code [28]. Actually, we used pgfortran -fast -Mcuda so that host code is also optimized.
The time command reported

12

real 0m23.163s
user 0m14.505s
sys 0m4.192s

on runtime/s, which could be compared with those in Fig. 6, and

• Processing in the GPU reduces the runtime: 0m37.769s vs. 0m23.163s.

• When using CUDA, the real time is no longer approximately equal to user + sys.

• sys time seems to be too high, even in the case the CPU is strongly involved in memory transfers
to/from the GPU.

Looking for the possible causes of the high sys time when using CUDA, we have taken into account

• The last line in Table 2, which is reported by pgacclinfo which is near the sys time shown above

• The advice given in [26], section “Running an Accelerator Program”, about using pgcudainit in
order to avoid the GPU startup time.

Fig. 10 shows the runtime as measured and reported by the time command and using the command
pgcudainit running in the background. Reported sys time in Fig. 10 is greater than that reported

real 0m18.135s
user 0m17.849s
sys 0m0.212s

Figure 10: Runtime of the CUDA Matrix Multiplication Program

in Fig. 6, but it is in some way expected, because of the data transfers to/from the GPU. Clearly, the
runtime has been reduced by using Fortran CUDA, from 0m37.769s as shown in Fig. 6 to 0m18.135s
as shown in Fig. 10, but there is room to a lot of enhancements, such as testing/looking for the best
values of block dimensions or using other ways of computing in the kernel routines, as that shown in [28].
Actually, we could look for further enhancements given that we have two Tesla 2075 cards attached to
the computer, which could be used in parallel.

6.2 CUDA Kernel Loop Directives

As explained before, Kernel Loop Directives (KLD) are applied directly on loops (as its name suggests).
Clearly, matrix multiplication has three nested loops and, thus, there is no problem to identify KLD
“target” code. Furthermore, every Fortran application will have its most time-consuming code in loops.
However, not every loop or group of nested loops will be as simple as that of the matrix multiplication
algorithm as given in Fig. 5.

As explained before, applying KLD to a legacy source code is not immediate, and we could define
changes in terms of computation and data

• Computation: the most time consuming loop/s should be identified as those on which !$ cuf
directive should be used.

• Data: Every data involved in the loops under the !$ cuf directive/s should be analyzed in order
to define device data.

In the specific case of the code given in Fig. 4 and Fig. 5 (the initial simple program taken as legacy
code), the most time consumig code is contained in the loops:

do i = 1, n
do j = 1, n

do k = 1, n
c(i,j) = c(i,j) + a(i,k)*b(k,j)

end do
end do

end do

13

which involves computation on three two-dimensional arrays: a, b, and c. Thus, we should a) declare
device data for those arrays, b) allocate data in GPU, and c) initialize GPU data with the corresponding
matrices, i.e.

...
! Data to be allocated in the GPU
double precision, allocatable, device :: a_d(:,:)
double precision, allocatable, device :: b_d(:,:)
double precision, allocatable, device :: c_d(:,:)
...
! Allocate and initialize matrix data in GPU
allocate(a_d(n,n))
allocate(b_d(n,n))
allocate(c_d(n,n))
a_d = a
b_d = b
c_d = c

Now, using a KLD is almost straigthforward

!$cuf kernel do(2) <<< *,* >>>
do i = 1, n
do j = 1, n

do k = 1, n
c_d(i,j) = c_d(i,j) + a_d(i,k)*b_d(k,j)

end do
end do

end do

Or, for a grid of 10x10 threads blocks, we should use

!$cuf kernel do(2) <<< (n/10, n/10), (10, 10) >>>
...

And all these source code transformations should be made to the original mm subroutine shown in Fig. 5.
The new mm subroutine using KLD is shown in Fig. 11, where each matrix to be allocated in the GPU is
directly allocated by the lines

double precision, device :: a_d(n,n)
double precision, device :: b_d(n,n)
double precision, device :: c_d(n,n)

instead of using the sequence

...
! Data to be allocated in the GPU
double precision, allocatable, device :: a_d(:,:)
double precision, allocatable, device :: b_d(:,:)
double precision, allocatable, device :: c_d(:,:)
...
allocate(a_d(n,n))
allocate(b_d(n,n))
allocate(c_d(n,n))

and this reduces the number of source code lines while not affecting the runtime (the runtime for the mm
routine with allocatable matrices is the same as that of the routine given in Fig. 11). Another (minor)
source code simplification is direct usage of parenthesized notation for grid and block definition instead of
using Type(dim3) data, which also implies that module cudafor is no longer needed in the modmm module.
Note that the code in Fig. 11 not only avoids the usage of a CUDA kernel routine but, also, the source
code is really similar the original one in Fig. 4, with the exception of computing on device data instead
of computing on the corresponding subroutine’s dummy arguments. However, device data declaration,
GPU data initialization and and getting the result computed in the GPU via an assignment are necessary

14

source code modifications to be made to legacy code in order to take advantage of GPU processing. The
complete matrix multiplication program using KLD in subroutine mm is given in Appendix B, and can be
compiled with pgfortran -fast -Mcuda as the previous version (the one with an explicit CUDA kernel
routine).

! This subroutine has been changed to use a cuf directive

subroutine mm(a, b, c, n)

implicit none

double precision :: a(n,n), b(n,n), c(n,n)

integer :: n

! Data to be allocated in the GPU

double precision, device :: a_d(n,n)

double precision, device :: b_d(n,n)

double precision, device :: c_d(n,n)

! matrix indexes

integer :: i, j, k

! Initialize matrix data in GPU

a_d = a

b_d = b

c_d = c

!$cuf kernel do(2) <<< (n/10,n/10), (10,10) >>>

do i = 1, n

do j = 1, n

do k = 1, n

c_d(i,j) = c_d(i,j) + a_d(i,k)*b_d(k,j)

end do

end do

end do

! Get the result from GPU memory

c = c_d

end subroutine mm

Figure 11: Fortran Matrix Multiplication Routine Using KLD

Fig. 12 shows the runtime as measured and reported by the time command and using the command
pgcudainit running in the background. Even when source code of Fig. 11 and that in Fig. 9 are not
completely different, runtime of code Fig. 11 as given in Fig. 12 is less than a half the runtime of code
in Fig. 9, as given in Fig. 10 (matrix size, grid and blocks are the same). A possible cause for the

real 0m8.291s
user 0m8.041s
sys 0m0.208s

Figure 12: Runtime of the Matrix Multiplication Program Using KLD

performance improvement of KLD code (Fig. 11) as compared to that of using the kernel subroutine
(Fig. 9) could be the way in which data accesses are made. In the case of KLD code, matrix accesses are
handled by the compiler from the source code which directly uses the loop indexes, while in the kernel
subroutine each access is computed from thread ids (thread location in the grid and block). However,
there is not full evidence that accessing matrices via data local to a subroutine could impose more than
100% performance penalty.

6.3 OpenACC Directives

The matrix multiplication algorithm is particularly well suited for OpenACC directives since, from the
point of view of computing, the !$acc region should be used on the three tightly nested loops, just
as explained in the previous subsection for KLD. Thus, the code adding the corresponding OpenACC
accelerator computing directive would be

15

!$acc region
do i = 1, n
do j = 1, n

do k = 1, n
c(i,j) = c(i,j) + a(i,k)*b(k,j)

end do
end do

end do
!$acc end region

And there is no need for additional accelerator directives such as those referred to as accelerator data
directives, since

• variables i, j, and k are automatically handled as local to each thread by the compiler, such as
when using a !$cuf directive.

• matrix storage (for matrices a, b, and c) is automatically allocated in the device.

• matrix data transfers are automatically handled by the compiler: initialization (transferring data
from host to device memory) previous to the computation in the GPU, and obtaining the result
(transferring data from device to host memory) after computation in the GPU.

It is very interesting compiler’s definitions for grid and blocks and the corresponding ways of chang-
ing compiler’s default/s. The first step, however, is that the compiler to handle the OpenACC direc-
tives (referred to as accelerator directives in [25]). The pgfortran option -Mcuda does not include
handling OpenACC directives, so we should use at least the option -ta=nvidia. Actually, we use
pgfortran -ta=nvidia,time -Minfo=accel since

• Option -ta=nvidia,time (including nvidia suboption “time”) implies:

– Accelerator regions are compiled to the NVIDIA accelerator/GPU.

– Accelerator regions are profiled (via a so-called “limited-profiling library”).

• Option -Minfo=accel provides information about the way in which accelerator regions are compiled.

The complete code is given in Appendix C just for the sake of completeness, but it is the same as that
in Fig. 4 and Fig. 5 with the three loops inside !$acc region ... !$acc end region as shown above.
Compiling the code with the aforementioned options (pgfortran -ta=nvidia,time -Minfo=accel),
provides the compiler information shown in Fig. 13, where

mm:

29, Generating copyin(b(:n,:n))

Generating copyin(a(:n,:n))

Generating copy(c(:n,:n))

Generating compute capability 1.3 binary

Generating compute capability 2.0 binary

30, Loop is parallelizable

31, Loop is parallelizable

32, Complex loop carried dependence of ’c’ prevents parallelization

Loop carried dependence of ’c’ prevents parallelization

Loop carried backward dependence of ’c’ prevents vectorization

Inner sequential loop scheduled on accelerator

Accelerator kernel generated

30, !$acc do parallel, vector(16) ! blockidx%x threadidx%x

31, !$acc do parallel, vector(16) ! blockidx%y threadidx%y

32, !$acc do seq(16)

Cached references to size [(x)x16] block of ’a’

Cached references to size [16x(y)] block of ’b’

CC 1.3 : 27 registers; 80 shared, 20 constant, 0 local memory bytes

CC 2.0 : 22 registers; 16 shared, 76 constant, 0 local memory bytes

Figure 13: Compiler Report on OpenACC Region

16

• Information is related to subroutine mm, which is the only one with OpenACC directives.

• Data copy is reported for matrices a, b, and c.

• The two outer loops are identified as parallelizable and the inner loop is identified as having a data
dependence, hence it is not parallelized.

• The grid is constructed with blocks of 16x16 threads, using two !$acc do parallel, vector(16)
OpenACC directives.

In order to make a fair comparison with previous timing measurements, we have explicitly given the block
of threads via the corresponding !$acc do ... directives, i.e.

!$acc region
!$acc do parallel, vector(10)
do i = 1, n
!$acc do parallel, vector(10)
do j = 1, n

do k = 1, n
c(i,j) = c(i,j) + a(i,k)*b(k,j)

end do
end do

end do
!$acc end region

Now, besides the output of the time command, the program generated by the compiler shows its own
profiling data on accelerator regions, as specifically instructed by the nvidia suboption “time” of the
-ta=nvidia option (recall that -ta=nvidia,time was used). The complete output of the program is
shown in Fig. 14 (the command pgcudainit is running in the background), where

...

mm

30: region entered 1 time

time(us): total=3156709 init=55486 region=3101223

kernels=2939557 data=155903

w/o init: total=3101223 max=3101223 min=3101223 avg=3101223

35: kernel launched 1 times

grid: [400x400] block: [10x10]

time(us): total=2939557 max=2939557 min=2939557 avg=2939557

real 0m3.517s

user 0m2.120s

sys 0m1.368s

Figure 14: Runtime of the Matrix Multiplication Program Using OpenACC, 10x10 Threads in a Block

• The last three lines are generated by the time command as in the previous examples, and the
previous lines are generated by the program, using its own profiling data.

• It is reported that the kernel is launched 1 time, as expected.

• We now have available some interesting and potentially very useful timing data (given in microsec-
onds), specifically about

– kernel runtime, given as 2939557 (about 2.94s)

– initialization, given as 55486 (about 0.55s)

– data transfer/s runtime, given as 155903 (about 0.16s)

• The total runtime as measured by the operating system is 3.517s, and specifically the GPU (accel-
erator region) runtime is about 3.1s.

17

Is this runtime the optimum one? A priori, it is better than that of using KLD directives, given in Fig. 12.
However, threads are scheduled in the GPU in groups of 16 threads (so-called warps) inside Streaming
Processors (SPs) where all of the threads are able to share a common memory and synchronize. Thus, the
compiler’s default for 16x16 threads blocks (shown in Fig. 13) seems to be a good choice for launching a
kernel in a GPU. Fig. 15 shows the runtime as measured and reported by the time command and using
the command pgcudainit running in the background.

real 0m2.117s
user 0m1.244s
sys 0m0.848s

Figure 15: Runtime of the Matrix Multiplication Program Using OpenACC, 16x16 Threads in a Block

OpenACC turns to be the best option for this simple problem, because: a) it involves just a few
source changes and b) it provides the best performance. Thus, OpenACC directives seem to be the first
choice when a legacy Fortran program has to be adapted/transformed in order to take advantage of GPU
capabilities. Also, OpenACC directives seem to be the best supported approach by the PGI Fortran
compiler, since:

• The compiler is able to report static information about accelerator (GPU) code being generated, as
explained above for the usage of the -Minfo=accel. It is clear that kernel code is explicitly given in
Fortran CUDA and using KLD, but some of the information given under -Minfo=accel and using
OpenACC directives is hard to obtain, e.g. information about binary compute capability as shown
in Fig. 13.

• We consider the automatic profiling code and report produced by ta=nvidia,time highly useful
and at not cost, and we would like to have a similar option for Fortran CUDA and KLD. Even
when the code can be profiled via instrumentation (e.g. using acc_enable_time and related sub-
routines/functions) the source code has to be changed. The compiler option available for accelerator
directives reduces the necessary source code changes and provides useful runtime-collected data.

7 Conclusions and Further Work

In this article we have studied some different ways of taking advantage of GPU devices in legacy Fortran
code, such as Fortran CUDA programming, Fortran CUDA Programming using Kernel Loop Directives,
and OpenACC programming. A source code example has been selected in order to apply these different
techniques and to measure the benefits of their usage. All of these techniques have (highly) improved
processing performance. Table 3 show the performance obtained in the host computer (“Legacy” column)
and for each of the alternatives in a single Tesla GPU (“CUDA”, “CUDA KLD”, “OpenACC 10x10”,
and “OpenACC 16x16” columns). We are not able to extrapolate these results neither in terms of

Legacy CUDA CUDA KLD OpenACC 10x10 OpenACC 16x16
(Elapsed) Runtime 37.769s 18.135s 8.291s 3.517s 2.117s
Gflop/s 3,4 7,1 15,4 36,4 60,5

Table 3: Host and GPU Performance for Matrix Multiplication

Fortran legacy source code transformations nor expected performance gains. The matrix multiplication
algorithm is extremely simple, contained in a single subroutine, and has a well known data-access and
data-processing patterns. Most of the Fortran legacy source code usually is, at least, hard to read
and cannot be approached in a single and straight way. Instead, we propose an incremental process of
transformations as explained in [27]. Source code transformations for GPU processing is possible and can
be included as part of the transformation incremental process. From the point of view of performance,
we have obtained great improvements for the matrix multiplication program, but we are still far from
the peak double precision floating point performance for the Tesla 2075, as given in [20]: 515 Gflop/s.
Also, the performance obtained in the host computer as well as in the GPU is highly biased by the
non-optimized source code. However, we think it is possible to include GPU processing in Fortran legacy
optimized and unoptimized source code. The amount of work will have to be evaluated in a case-by-case
analysis, as usual. We also should take into account that specifically optimized host algorithms are not
necessarily well suited directly for GPU processing [29].

18

We will continue our work following several guidelines, taking into account the work in this report as
well as previous work on Fortran legacy source code transformations and GPU processing:

• Approach real Fortran legacy source code, such as climate models and Magnetogasdynamics (MGD)
flows model/s.

• Measurements of source code transformations, specifically related to performance improvements
obtained in GPUs.

• Inclusion of specific tools in a development tool-chain or IDE (integrated Development Environment)
in order to take advantage of OpenACC directives in legacy Fortran source code.

We also think that much of the work for using more than one GPU card in parallel is already done, so
we will explore this line of research in the short-term research work.

Acknowledgements

We would like to thank NVIDIA Corporation, which donated several NVIDIA cards (including the two
NVIDIA Tesla 2075 mentioned in this report) to IEEE/NSF Fall-11 Early Adopter awardees. We would
also like to thank The Portland Group (PGI) for providing an extended evaluation copy of PGI Accelerator
Workstation for this research.

References

[1] J. Backus. The History of Fortran I, II, and III. ACM SIGPLAN Notices, 13(8):165–180, 1978.

[2] S. Behling, R. Bell, P. Farrell, H. Holthoff, F. OConnell, and W. Weir. The POWER4 Processor
Introduction and Tuning Guide. International Business Machines Corporation, Nov. 2001.

[3] R. G. Belleman, J. Bédorf, and S. F. Portegies Zwart. High performance direct gravitational n-
body simulations on graphics processing units ii: An implementation in cuda. New Astronomy,
13(2):103–112, 2008.

[4] K. Bennett. Legacy systems: Coping with success. IEEE Software, 12(1):19–23, 1995.

[5] S. Borkar. Thousand core chips: a technology perspective. In Proceedings of the 44th annual Design
Automation Conference, pages 746–749. ACM, 2007.

[6] S. Borkar. Thousand core chips: a technology perspective. In Proceedings of the 44th annual Design
Automation Conference, pages 746–749. ACM, 2007.

[7] M. L. Brodie and M. Stonebraker. Migrating legacy systems. Morgan Kaufmann Publishers, 1995.

[8] R. Farber. Cuda, supercomputing for the masses: Part 1. Doctor Dobb’s Journal, April 15, 2008.

[9] D. Geer. Chip makers turn to multicore processors. Computer, 38(5):11–13, 2005.

[10] N. E. Gold. The meaning of legacy systems. Univ. of Durham, Dept. of Computer Science, 1998.

[11] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. Nvidia tesla: A unified graphics and
computing architecture. Micro, IEEE, 28(2):39–55, 2008.

[12] M. Markowitz. Pgi cuda fortran now available from the portland group. http://www.pgroup.com/
about/news.htm#37, Nov. 2009.

[13] M. Méndez. Fortran refactorings for legacy systems. Universidad Naciona de La Plata, 2011.

[14] M. Metcalf. The seven ages of fortran. Journal of Computer Science and Technology, 11(1):1–8,
2011.

[15] C. Michael. Feathers. working effectively with legacy code, 2005.

[16] NVIDIA Corporation. Openacc | nvidia developer zone. http://developer.nvidia.com/cuda/openacc.

19

[17] NVIDIA Corporation. Nvidia whitepaper, nvidia’s next generation cuda compute architecture:
Fermi. http://www.nvidia.com/content/PDF/fermi white papers/NVIDIA Fermi Compute Archi-
tecture Whitepaper.pdf, 2009.

[18] NVIDIA Corporation. Nvidia cuda programming guide, 2011.

[19] NVIDIA Corporation. Cuda fortran. http://developer.nvidia.com/cuda/cuda-fortran, 2012.

[20] NVIDIA Corporation. NVIDIA Tesla C2075 Companion Processor. Calculate Results Exponentially
Faster. http://www.nvidia.com/content/PDF/datasheet/NV DS Tesla C2075 Sept11 US HR.pdf,
Sept. 2011.

[21] OpenACC-Standard.org. The openacc application programming interface. version 1.0. http://open-
acc.org/download-area, Nov. 2011.

[22] OpenMP Architecture Review Board. Openmp application program interface - version 3.1.
http://openmp.org/wp/, July 2011.

[23] N. Satish, M. Harris, and M. Garland. Designing efficient sorting algorithms for manycore gpus.

[24] The Portland Group. CUDA Fortran. Programming Guide and Reference. http://www.pgroup.com/
doc/pgicudaforug.pdf, Release 2012.

[25] The Portland Group. PGI Compiler Reference Manual. Parallel Fortran, C and C++ for Scientists
and Engineers. http://www.pgroup.com/doc/pgiref.pdf, Release 2012.

[26] The Portland Group. PGI Compiler User’s Guide. Parallel Fortran, C and C++ for Scientists and
Engineers. http://www.pgroup.com/doc/pgiug.pdf, Release 2012.

[27] F. G. Tinetti and M. Méndez. Fortran legacy software: source code update and possible parallelisa-
tion issues. ACM SIGPLAN Fortran Forum, 31(1):5–22, April 2012.

[28] M. Wolfe. GPU Programming with CUDA (C and PGI CUDA Fortran). Part 2: CUDA. http://
www.pgroup.com/lit/presentations/pgi-gpu-tutorial-cuda.pdf, March 2011.

[29] M. Wolfe. GPU Programming withthe PGI Accelerator Programming Model. Part 3: The
PGI Accelerator Programming Model. http://www.pgroup.com/lit/presentations/pgi-gpu-tutorial-
accelerator.pdf, March 2011.

[30] M. Wolfe. Cuda fortran: The next level. PGI Insider, Technical Information from The Portland
Group, http://www.pgroup.com/lit/articles/insider/v2n3a1.htm, Sep. 2010.

20

Apendix A: CUDA Matrix Multiplication

!===

! CUDAmm.f90

!===

module modmm

use cudafor

contains

!!

subroutine initmat(m, n, val)

implicit none

double precision :: m(n,n)

integer :: n

double precision :: val

integer :: i, j

do i = 1, n

do j = 1, n

m(i,j) = val

end do

end do

end subroutine initmat

!!

! This subroutine does not compute, just calls the kernel

!and handles memory transfers)

subroutine mm(a, b, c, n)

implicit none

double precision :: a(n,n), b(n,n), c(n,n)

integer :: n

! Data to be allocated in the GPU

double precision, allocatable, device :: a_d(:,:)

double precision, allocatable, device :: b_d(:,:)

double precision, allocatable, device :: c_d(:,:)

! Grid and Block definitions

Type(dim3) :: gridspec, blockspec

! Allocate and initialize matrix data in GPU

allocate(a_d(n,n))

allocate(b_d(n,n))

allocate(c_d(n,n))

a_d = a

b_d = b

c_d = c

! Set grid and block specification

gridspec = dim3(n/10, n/10, 1)

blockspec = dim3(10, 10, 1)

! Kernel call

call cudamm<<<gridspec, blockspec>>>(a_d, b_d, c_d, n)

! Get the result from GPU memory

c = c_d

end subroutine mm

! continued...

21

!!

attributes(global) subroutine cudamm(a, b, c, n)

implicit none

double precision, device :: a(n,n), b(n,n), c(n,n)

integer, value :: n

integer :: k, ix, iy

ix = (blockIdx%x-1) * blockdim%x + threadIdx%x

iy = (blockIdx%y-1) * blockdim%y + threadIdx%y

do k = 1, n

c(ix, iy) = c(ix, iy) + a(k,ix)*b(k,iy)

end do

end subroutine cudamm

!!

subroutine chkval(m, n, val)

implicit none

double precision :: m(n,n)

integer :: n

double precision :: val

integer :: i, j

do i = 1, n

do j = 1, n

if (m(i,j) /= val) print *, "diff. at", i, j

end do

end do

end subroutine chkval

end module modmm

!===

program matmul

use modmm

implicit none

integer :: n

double precision, allocatable :: a(:,:)

double precision, allocatable :: b(:,:)

double precision, allocatable :: c(:,:)

n = 4000

allocate(a(n,n))

allocate(b(n,n))

allocate(c(n,n))

! initialize matrices

call initmat(a, n, 1d0)

call initmat(b, n, 1d0)

call initmat(c, n, 0d0)

! c = a x b

call mm(a, b, c, n)

! check result

call chkval(c, n, dble(n))

deallocate(a, b, c)

end program matmul

22

Compiled with pgfortran -fast -Mcuda -o CUDAmm CUDAmm.f90

23

Apendix B: Matrix Multiplication Using a Kernel Loop Directive

!===

! KLDmm.f90

!===

module modmm

contains

!!

subroutine initmat(m, n, val)

implicit none

double precision :: m(n,n)

integer :: n

double precision :: val

integer :: i, j

do i = 1, n

do j = 1, n

m(i,j) = val

end do

end do

end subroutine initmat

!!

! This subroutine has been changed to use a cuf directive

subroutine mm(a, b, c, n)

implicit none

double precision :: a(n,n), b(n,n), c(n,n)

integer :: n

! Data to be allocated in the GPU

double precision, device :: a_d(n,n)

double precision, device :: b_d(n,n)

double precision, device :: c_d(n,n)

! matrix indexes

integer :: i, j, k

! Initialize matrix data in GPU

a_d = a

b_d = b

c_d = c

!$cuf kernel do(2) <<< (n/10,n/10), (10,10) >>>

do i = 1, n

do j = 1, n

do k = 1, n

c_d(i,j) = c_d(i,j) + a_d(i,k)*b_d(k,j)

end do

end do

end do

! Get the result from GPU memory

c = c_d

end subroutine mm

! continued...

24

!!

subroutine chkval(m, n, val)

implicit none

double precision :: m(n,n)

integer :: n

double precision :: val

integer :: i, j

do i = 1, n

do j = 1, n

if (m(i,j) /= val) print *, "diff. at", i, j

end do

end do

end subroutine chkval

end module modmm

!===

program matmul

use modmm

implicit none

integer :: n

double precision, allocatable :: a(:,:)

double precision, allocatable :: b(:,:)

double precision, allocatable :: c(:,:)

n = 4000

allocate(a(n,n))

allocate(b(n,n))

allocate(c(n,n))

! initialize matrices

call initmat(a, n, 1d0)

call initmat(b, n, 1d0)

call initmat(c, n, 0d0)

! c = a x b

call mm(a, b, c, n)

! check result

call chkval(c, n, dble(n))

print *, "Last value...", c(n,n)

deallocate(a)

deallocate(b)

deallocate(c)

end program matmul

!===

Compiled with pgfortran -fast -Mcuda -o KLDmm KLDmm.f90

25

Apendix C: Matrix Multiplication Using OpenACC Directives

!===

! ACCmm.f90

!===

module modmm

contains

!!

subroutine initmat(m, n, val)

implicit none

double precision :: m(n,n)

integer :: n

double precision :: val

integer :: i, j

do i = 1, n

do j = 1, n

m(i,j) = val

end do

end do

end subroutine initmat

!!

subroutine mm(a, b, c, n)

implicit none

double precision :: a(n,n), b(n,n), c(n,n)

integer :: n

integer :: i, j, k

! making the product

!$acc region

do i = 1, n

do j = 1, n

do k = 1, n

c(i,j) = c(i,j) + a(i,k)*b(k,j)

end do

end do

end do

!$acc end region

end subroutine mm

!!

subroutine chkval(m, n, val)

implicit none

double precision :: m(n,n)

integer :: n

double precision :: val

integer :: i, j

do i = 1, n

do j = 1, n

if (m(i,j) /= val) print *, "diff. at", i, j

end do

end do

end subroutine chkval

end module modmm

!===

! continued...

26

program matmul

use modmm

implicit none

integer :: n

double precision, allocatable :: a(:,:)

double precision, allocatable :: b(:,:)

double precision, allocatable :: c(:,:)

n = 4000

allocate(a(n,n))

allocate(b(n,n))

allocate(c(n,n))

! initialize matrices

call initmat(a, n, 1d0)

call initmat(b, n, 1d0)

call initmat(c, n, 0d0)

! c = a x b

call mm(a, b, c, n)

! check result

call chkval(c, n, dble(n))

print *, "Last value...", c(n,n)

deallocate(a)

deallocate(b)

deallocate(c)

end program matmul

!===

Compiled with pgfortran -fast -ta=nvidia,time -Minfo=accel -o ACCmm ACCmm.f90

27

