A Catalog and Two Possible Classifications of
Fortran Refactorings

Mariano Méndez! Jeffrey Overbey? Alejandra Garrido!*
Fernando G. Tinetti' Ralph Johnson?

I Facultad de Informética
Universidad Nacional de La Plata
50 y 120, La Plata, Buenos Aires, Argentina

2 Department of Computer Science
University of Illinois at Urbana-Champaign
201 N. Goodwin Ave., Urbana, Illinois, USA

Technical Report FR-UIUC/UNLP-2010-1

July 2010

Abstract

This paper presents a catalog of code refactorings that are intended
to improve different quality attributes of Fortran programs. We clas-
sify the refactorings according to their purpose, that is, the internal
or external quality attribute(s) that each refactoring targets to im-
prove. We sketch the implementation of one refactoring in Photran, a
refactoring tool for Fortran.

1 Introduction

In 1956, the first draft of The IBM Mathematical Formula Translating Sys-
tem was finished [3]. This first version of Fortran (called FORTRAN I) was
the start of a complex evolutionary process. This process led to many dif-
ferent versions of the Fortran language, each of them with features required
by the historical moment. Various features were incorporated during its
evolution: subprograms (FORTRAN 66), an improved set of control struc-
tures to support structured programming (FORTRAN 77), modules and

*also LIFTA and CONICET Argentina
falso III-LIDI and Comisién de Investigaciones Cientificas de la Prov. de Bs. As.

pointers (Fortran 90/95), object-oriented capabilities (Fortran 2003), sub-
modules and co-arrays (Fortran 2008) [14]. For this evolution to be practical,
the backward compatibility with the older versions of the language was es-
sential [14]. Annex B of Fortran 2008 standard (ISO/IEC 2008) enumerates
the obsolete features of the language that have not been deleted, some of
which may be located in the FORTRAN 66 and FORTRAN 77 specification.
Even when obsolete features were deleted, compatibility remained: “Unlike
Fortran 90, Fortran 95 was not a superset; it deleted a small number of
so-called obsolescent features. This incompatibility is more theoretical than
real however, as all existing Fortran 95 compilers include the deleted features
as extensions” [5].

Over so many years of evolution, program maintenance becomes chal-
lenging. Many operations can be written in three or four different ways. For
example, a Loop that initializes a matrix may be written in four different
ways:

DO 110 I=1,30 DO 100 I=1,30

DO 100 J=1,30 DO 100 J=1,30
MATRIX(I,J)=0 100 MATRIX(I,J)=0

100 CONTINUE
110 CONTINUE

DO I=1,30
DO J=1,30 e
MATRIX(I,J)=0 MATRIX(1:30,1:30)=0
END DO
END DO

The magnitude of maintenance tasks is increased not only by the evolution
of versions, but also by the large amount of Fortran code in production and
the importance of Fortran as a programming language in several disciplines
such as meteorology, physics and mathematics.

Refactoring is a technique used to improve internal qualities of the code
like readability, flexibility, understandability and maintainability [8]. It is
applied interactively on code with “bad smells” like duplication and lack of
parameters [8], and after a series of small transformations, it beautifies the
code preserving its behavior. Using refactoring, developers and maintainers
can manage the code and then extend it with new functionality. In the case
of Fortran, refactoring can make substantial improvements to readability
and maintainability, and it can also modernize the code by replacing ob-
solete constructs with newer alternatives. [14]. Moreover, refactoring may
be used to improve external qualities like performance [15], which is highly

beneficial in the case of Fortran since it is used mostly for high performance
computing. However, the goals of high performance many times seem to
oppose other goals of software engineering. For example, a transformation
like loop unrolling will definitely worsen readability and maintainability of
the code. The focus is not on these kinds of compiler optimizations, but
on refactorings that improve maintainability as well as maintain high per-
formance, and vice versa. Even more, refactorings that improve readability,
an internal quality, may be applied to gain a better understanding of the
program and then improve performance by parallelization.

The real value of refactoring comes from its automation and its integra-
tion in development environments. Manual refactoring is time-consuming
and, also, prone to errors. The first refactoring tool was built for the
Smalltalk language, but it was not until it was integrated into the Smalltalk
browser that it became successful [16]. Nowadays there are several refac-
toring tools for Java like the one integrated in Eclipse JDT [7] and Idea
[10]. The situation is not different for Fortran. Refactoring is almost im-
possible without a tool that can analyze the preconditions under which a
refactoring is “safe” and then performs the transformations without break-
ing the code. For this purpose, refactoring engines parse the code, create a
program representation based on abstract syntax trees, and perform anal-
ysis and transformations on the trees. Syntax trees contain enough editing
information to be able to pretty-print the trees as close as possible to the
original code. Photran is an Eclipse-based Fortran IDE [2], which started as
a project of the University of Illinois at Urbana-Champaign and it is now an
open-source project with many contributors. Photran has a sophisticated
infrastructure for development and refactoring, and new refactorings are be-
ing added to it. In this paper we propose a catalog of refactorings and a
classification in terms of purpose. It is also possible to list the refactorings
that have been already implemented in Photran, the ones that are under
construction and those which has not been started.

The structure of this technical report is as follows. The next section
describes the main features that characterize Fortran programs. In Section
3 we propose a catalog of refactorings for Fortran programs. Section 4
describes Photran in detail and how it is like to implement refactorings on
its infrastructure. Section 5 presents related work and finally Section 6
presents conclusions and future work.

2 Characteristics of Fortran Programs

Fortran is one of the most ancient programming language still being used.
Fortran programs have a combination of

e Old-style Fortran language constructs, such as those designed in the
early stages of the language, up to the ’70s.

e Old-style software design methodology or no software development
methodology at all. This lack of methodology has been partially mit-
igated by the strong relationship among programs and mathematical
methods implemented.

Fortran evolution has resulted in a wide range of equivalent syntactical con-
structions. From those equivalent constructions, the older ones (coming from
old language version/s) have many disadvantages/drawbacks. Programmers
do not need to be aware of all these variations and/or Fortran’s dialects in
an academic course about Fortran programming, but the scenario radically
changes if a programmer is working on a twenty year old application that
has been written by others in FORTRAN 77 [14, 17].

However, not all Fortran code is legacy code. Fortran has gained a lead-
ing role in the High Performance Computing world throughout the years.
High Performance Fortran is an extension of Fortran 90 that supports par-
allel/vector computing [11]. Co-Array Fortran is an extension of Fortran 95
supported by Cray compilers [1]. Currently, old Fortran programs need to
be made more efficient in multiprocessing systems with multi-core architec-
tures [18]. Furthermore, multi-core processors are making single threaded
(or, directly, sequential) software obsolete, such as most of the legacy For-
tran programs.

Other characteristics of old Fortran programs, such as using COMMON
blocks for saving memory, give raise to numerous problems for identify-
ing data as global or local to each subroutine. Automated and graphics
tools for Fortran has not been used extensively, and refactoring is a good
scenario to introduce and use tools such as Photran in daily software pro-
gramming/maintenance work.

3 A Catalog of Fortran Refactorings

This section presents a catalog of refactorings for Fortran code. This list
of refactorings does not intend to be exhaustive but we aim at providing
a complete classification of refactorings according to their specific purpose.
Classifying Fortran refactorings by purpose is not easy since a refactoring
may belong to more than one category, and we need to decide where it pro-
vides the most benefit. However, we think it is worth the effort so developers
can make a better decision at selecting the most advantageous refactoring for
their needs. We have found two categories of Fortran refactorings: Refactor-
ings to Improve Maintainability and Refactorings to Improve Performance.
Each one of these classes may be divided into subclasses. This categoriza-
tion is not the only possible one. Many classical refactorings have been
intentionally omitted from this list since they are widely described in the
literature [12, 8], although they fit into this categorization as well.

3.1 Refactorings to Improve Maintainability

The refactorings in this category are intended to improve internal quality
attributes of the code such as: readability, understandability and extensi-
bility (attributes that refactoring has been recognized to improve) and also
refactorings that allow upgrading the code to newer versions of Fortran,
removing obsolete features.

e Refactorings to Improve Presentation/Readability:

— Rename: change the name of a variable, subprogram, etc.

— Change Keyword Case: change the case of keywords in the
source code.

— Extract Local Variable: remove a subexpression from a larger
expression and assign it to a local variable.

— Extract Internal Procedure: remove a sequence of statements
from a procedure, place them into a new subroutine, and replace
the original statements with a call to that subroutine.

— Canonicalize Keyword Capitalization: make all applicable
keywords the same case throughout the selected Fortran program
files.

e Refactorings to Facilitate Design/Interface Changes:

— Encapsulate Variable: create getter and setter methods for
the selected variable.

— Make Private Entity Public: switch a module variable or
subprogram from Private to Public visibility.

— Change Subprogram Signature: allow the user to add, re-
move, reorder, rename, or change the types of the parameters of
a function or subroutine, updating call sites accordingly.

— Add Only Clause To Use Statements: create a list of the

symbols that are being used from a module, and adds it to the
Use statement.

— Move Entity Between Modules: move a module variable or
procedure from one module to another and adjust Use statements
accordingly.

¢ Refactorings to Avoid Poor Fortran Coding Practices:

— Remove Unreferenced Labels: delete a label if it is never
referenced.

— Remove Real Type Iteration Index: change non-integer Do
parameters or control variables.

— Remove Reserved Words As Variables: rename variables
named equal to Fortran reserved keywords.

— Introduce Implicit None: add Implicit None statements to
a file and add explicit declarations for all variables that were
previously declared implicitly.

— Introduce Intent In/Out: introduce intent In or Out in each
variable declaration within functions and subroutines.

— Remove Unused Local Variables: remove declarations of lo-
cal variables that are never used.

— Minimize Only List: delete symbols that are not being used
from the Only list in a Use statement.

— Make Common Variable Names Consistent: give variables
the same names in all definitions of the Common block.

— Delete Unused Common Block Variable: remove unused
variables declared in a Common Block.

— Add Dimension Statement: add the Dimension statement to
declare an array.

— Remove Format Statement Labels: replace the format code
in the read /write statement directly, instead of specifying the for-
mat code in a separate format statement.

¢ Refactorings to Remove Outdated, Obsolete and Non-Standard
Constructs:

— Replace Obsolete Operators: replace all uses of old-style com-
parison operators (such as .LT. and .EQ.) with their newer equiv-
alents (symbols such as | and ==).

— Change Fixed Form To Free Form: change Fortran fixed
format files to Fortran free format files.

— Transform Character * to Character(Len =) declaration:
replace Character® with the equivalent Character(Len =) for string
declaration.

— Remove Computed Go To statement: replace a computed
Go To statement with an equivalent Select-Case construct con-
taining Go To or if possible remove the Go Tos statement entirely.

— Remove Arithmetic If Statement: replace an old arithmetic
If statement, being analogous to removing computed Go To.

— Remove Assigned Go Tos: remove assigned Go To state-
ments.

— Replace Old Styles DO loops: replace old styles Do Loop
Continue with the equivalent Do Loop with End Do statement.

— Replace Shared Do Loop Termination: replace all shared
Do Loop termination construct with the equivalent Do Loop with
End Do statement.

— Transform To While Sentence: remove simulated While
made by If and Go To statement.

— Move Common Block to Module: remove all declarations of
a particular Common block, moving its variable declarations into
a module and introducing Use statements as necessary.

— Move Saved Variables To Common Block: create a Com-
mon block for all saved variables of a subprogram.

— Convert Data To Parameter: change a Data declaration to
Parameter declaration making more clear which variables are con-
stant and which ones are not.

3.2 Performance Refactorings

This category currently has two examples of how refactoring can be used to
improve performance while preserving not only the behavior of the program
but also the readability and maintainability of the code. This is one of the
factors that sets refactoring apart from optimization.

e Refactorings For Performance

— Change To Vector Form: rewrite a Do Loop into an equiv-
alent Fortran vectorial notation, which allows the compiler to
make better optimizations [18].

— Interchange Loops: swap inner and outer loops of the selected
nested do-loop, in the case that doing so optimizes memory ac-
cess pattern and allows to take advantage of data prefetching
techniques.

3.3 Another Categorization

Some of the refactorings proposed in this catalog are currently in process
of implementation or were implemented in a development and refactoring
tool for Fortran called Photran. Photran is described in the next section.
Taking this into account, we may also categorize refactorings by its degree
of implementation: Finished, In Progress, and Planned. Tables 1, 2 and 3

list the refactorings in each of these categories respectively.

Table 1: Finished Refactorings
Replace Obsolete Operators
Canonicalize Keyword Capitalization
Change Keyword Case
Introduce Implicit None
Rename
Interchange Loops
Encapsulate Variable
Make COMMON Variable Names Consistent
Move Saved Variables To COMMON Block
Extract Local Variable
Extract Procedure
Make Private Entity Public
Remove Unused Local Variables
Minimize ONLY List
Add ONLY Clause To USE Statements
Data To Parameter

Table 2: In Progress Refactorings
Change Fixed Form To Free Form
Replace Old Styles Do loops
Replace Shared Do Loop Termination
Remove Unreferenced Labels
Add Parameter To SubProgram
Introduce Intent In / Out
Replace COMMON With Derived Type
Add Public Module to COMMON Block
Move Entity Between Modules

Table 3: Planned Refactorings
Remove Arithmetic IF Statement
Transform CHARACTER* to CHARACTER(LEN =) declaration
Remove FORMAT Statement Labels
Add DIMENSION Statement
Remove Real Type Iteration Index
Remove Reserved Words As Variables
Remove Computed GO TO statement
Remove Assigned GO TOs
Transform To While Sentence
Change To Vector Form
Delete Unused COMMON Block Variable

4 Photran: A Refactoring Tool for Fortran

Photran is an advanced, multiplatform integrated development environment
(IDE) for Fortran based on Eclipse. Photran has a number of powerful fea-
tures. As an IDE, it integrates editing, source navigation, compilation, and
debugging into a single tool. It uses make for compilation, which allows it
to work with virtually any existing Fortran compiler; so-called error parsers
are provided which interpret the error messages from popular compilers, as-
sociating error markers with the appropriate lines of code. Language-based
searching allows a Fortran programmer to quickly find a subprogram or
module with a particular name, or to find all of the references to a partic-
ular variable or subprogram. From the beginning, Photran was designed
to support refactoring, and much of its development effort has focused on
providing a robust refactoring infrastructure. Version 6.0 (released June,
2010) contains 16 refactorings, and many more are under development. The
development version of Photran provides name binding, control flow, and
basic data flow information to support precondition checking.

4.1 Building New Refactorings

Photran divides refactorings into two categories: An editor-based refactor-
ing, which requires the user to select part of a Fortran program in a text
editor in order to initiate the refactoring, and a resource refactoring which
applies to entire files. To create a new refactoring, the developer must de-
cide whether it will be an editor-based refactoring or a resource refactoring.
Photran provides different superclasses for each. The developer then cre-
ates a concrete subclass and adds a line of XML to a configuration file to
make Photran aware of the new refactoring. The concrete subclass must de-
fine methods which first provide the name of the refactoring. This becomes

its label in the Refactor menu it is also used to describe the refactoring in
the Edit > Undo menu item and in other user interface elements. Second,
check initial preconditions. These are usually simple checks which verify
that the user selected the correct construct in the editor, that the file is not
read-only, etc. Third, it is necessary to acquire user input. For example, a
refactoring to add a parameter to a subprogram must ask the user to supply
the new parameter’s name and type. and check final preconditions. These
validate user input and perform any additional checks necessary to ensure
that the transformation can be performed, the resulting code will compile,
and it will retain the behavior of the original program. And Finally, perform
the transformation. Once all preconditions have been checked, this method
determines what files will be changed, and how. Thanks to the XML con-
figuration file and Java’s reflective facilities, much of the user interface for
a refactoring comes “for free.” Then Photran automatically adds the refac-
toring to the appropriate parts of the Eclipse user interface, and it provides
a wizard-style dialog box which allows the user to interact with the refac-
toring. This dialog includes a diff-like preview, which allows the user to see
what changes the refactoring will make before committing it.

4.2 Example: Replace Old-Style Do-Loops

One refactoring we implemented is called Replace Old-Style Do-Loops [14,
18]. There are many different ways to write a do-loop in Fortran, depending
on what version of Fortran is being used. “Old-style” do-loops contain a
numeric statement label in the loop header; the statement with that label
constitutes the end of the loop (see Figure 1). In contrast, “new-style” do-
loops consist of matched DO/END DO pairs, which are generally preferred
(see Figure 2).

DO 100 I=1,30 DO 100 I=1,30
V(I)=0 100 V(I)=0
100 CONTINUE

Figure 1: Old-Style Fortran Do Loops

Replace Old-Style Do-Loops was implemented as a resource refactoring
in Photran as follows:
Preconditions: The source code must have at least one do-statement. The
terminating statement label for each old-style do-loop must be unique. The
terminating statement must be at the same level of the nesting as the do-
statement. For example, the terminating statement cannot be inside an
if-construct in the loop.

10

DO I=1,30 DO I=1,30
V(I)=0 100 V(I)=0
100 CONTINUE END DO

END DO

Figure 2: New-Style Fortran Do Loops

| changes tabe performed

| & @& Replace OWdstyle Doloops fan | %5 Dot
- [Z]@F Ocean.Fan - Faprtransample = =0
Hﬂ Qeean.fon
| Original Source Refactored Source
AR clear awplt, amstm, avsi and ilgw arre T clear awplt, amstm, avst and ill~) |
do 7000 1=1,5 da 1=1,5
do 7000 k=1,km do k=1, Kk
do 7000 3=1, Imt do 3=1, 3t
do 7000 i=1,imt do i=1,imt
amplt (1,5, %k, 1) =0.0 7000 amplt (i, 3.k, 13=0.0] -
.. END DO
do 7006 1=1,3 END DO
do 7006 k=1,km END DO
do 7006 j=1,imt END DO |
do 7006 i=1,imt s
edplt{i,j,k,1)=0.0 do 1=1,3 -
cont inue do k=1,km =0
... I do j=1, jmt 1
... do i=1,imo | |
Zet initial convective layer depth to be oo edplt(i,3,k,1)=0.0
do 3=1,jme 7006 continue |
do i=1,imt END DO -
P B P PR LY | wun e b
- || L | i | I
<Back | [_ok][concel
18 el
i Wiitable

Insert 2412

Figure 3: Photran diff view of Replace old-style Do-Loop refactoring.

Transformation: This refactoring transforms all old-style do-loops in the
selected files. An END DO statement is inserted immediately following the
terminating statement for each old-style do-loop. The statement label is
removed from the loop header, and the loop body is re-indented. Figure 3
shows the diff-like preview of an old-style do loop refactoring as implemented

in Photran.

The most difficult part of implementing a new refactoring is designing a
correct set of preconditions. We believe that Replace Old-Style Do-Loops is a
straightforward, syntactic transformation, whereas many other refactorings

require much more complicated analyses.

11

5 Related Work

The concept of code restructuring has existed for many years now, and some
transformation tools have being built to apply transformation rules on a
complete program in batch mode. An example of this kind of infrastructure
is the DMS tool, which allows for reengineering and migration of programs
in many different programming languages [4].

In the case of Fortran, the vast amount of existent lines of Fortran code
and the investment made on them has encouraged the development of some
tools to upgrade legacy Fortran code to new standards. Greenough and
Worth have reported a number of software tools currently available that
may apply transformations on Fortran programs [9]. There are at least two
important reasons of why these tools have not been successful. First, apply-
ing some transformation rules in batch mode may help updating the code by
replacing outdated constructs (e.g., replacing obsolete operators), but that
does not necessarily imply that a developer will gain a better understanding
of the structure of code, nor will she be able to clean it, modularize it or re-
move duplication. That is, legacy code will still be legacy even if it is written
in Java but with poor development practices. Second, these transformation
tools are not integrated with development environments.

The concept of refactoring as an interactive process performed by an ex-
pert programmer while carefully examining the code, in small and safe steps,
was defined in Opdyke’s thesis many years ago [12]. Since that time, Ralph
Johnson’s research group at the University of Illinois has promoted refactor-
ing and the development of automated refactoring tools, although it was not
until the advent of agile methodologies that refactoring received widespread
attention. Specifically for Fortran, Vaishali De’s master’s thesis [6] enumer-
ates a set of possible Fortran 90 refactorings. Later on, Overbey et al. [13]
bring to light the need of refactoring tools integrated with IDEs for Fortran
programs and in the High Performance world. Photran is introduced as
an integrated development environment that provides the necessary infras-
tructure for implementing Fortran refactoring [2].In a subsequent work [14],
a study founded on the Fortran evolution enumerates outdated language
constructs that a refactoring tool could help remove from Fortran code and
proposes, more generally, a role that refactoring tools could play in language
evolution. As an example, Photran was used to eliminate global variables.
Tinetti et al. [17] base their work improving Fortran legacy source for per-
formance optimization on a weather climate model implemented about two
decades ago. This work is close to some refactorings proposed in this paper.

12

6 Conclusions and Future Work

There are some automatic tools for upgrading or migrating Fortran pro-
grams, but they have not been successful in removing legacy features of
code. We believe that refactoring tools can have a profound impact in this
respect. For this reason, we are working on both: the definition of a catalog
of Fortran refactorings, classified with the intention of guiding developers
to use the right refactoring for their needs, and on the construction of a
powerful tool for development and refactoring.

Future work includes implementing more refactorings on Photran and
implying it on some case studies to measure the overall improvement. An-
other important factor is to encourage the scientific world to use Photran,
and that will require not only successful stories of the use of Photran in large
applications but also providing a formal foundation that ensures behavior
preservation.

References

[1] Cray Inc. http://www.cray.com/.

[2] Photran, an Integrated Development Environment and Refactoring
Tool for Fortran. http://www.eclipse.org/photran/.

[3] J. Backus. The History of Fortran I, II, and III. ACM SIGPLAN
Notices, 13(8):165-180, 1978.

[4] 1. Baxter, P. Pidgeon, and M. Mehlich. DMS: Program Transforma-
tions for Practical Scalable Software Evolution. In Proceedings of the
International Conference on Software Engineering, IEEE Press, 2004.

[5) M. Cohen. Fortran: A few historical details.
http://www.nag.co.uk/nagware/np/doc/thistory.asp, Oct. 2004.

[6] V. De. A Foundation for Refactoring Fortran 90 in Eclipse. Master’s
thesis, University of Illinois, 2004.

[7] The Eclipse Foundation. Eclipse.org home. http://www.eclipse.org/,
2010.

[8] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring:
Improving the Design of Existing Code. Addison-Wesley Professional,
1999.

[9] C. Greenough and D. Worth. The Transformation of Legacy Software:
Some Tools and a Process. Technical report, RAL Technical Report
TR-2003 012, 2004.

13

[10] JetBrains. IntelliJ IDEA 9. http://www.jetbrains.com/idea/, 2010.

[11] DB Loveman. High Performance Fortran. IEEE [see also IEEE Con-
currency] Parallel & Distributed Technology: Systems € Applications,
1(1):25-42, 1993.

[12] W.F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis,
1992.

[13] J. L. Overbey, S. Xanthos, R. Johnson, and B. Foote. Refactorings
for Fortran and High-Performance Computing. In SE-HPCS ’05: Pro-
ceedings of the second international workshop on Software engineering

for high performance computing system applications, pages 37-39, New
York, NY, USA, 2005. ACM.

[14] J.L. Overbey, S. Negara, and R.E. Johnson. Refactoring and the Evolu-
tion of Fortran. In 2nd International Workshop on Software Engineer-
ing for Computational Science and Engineering (SECSE’09), 2009.

[15] M. Rieger, B. Van Rompaey, B. Du Bois, K. Meijfroidt, and P. Olievier.
Refactoring for Performance: an Experience Report. In Proc. of the
Third Intern. ERCIM Symposium on Software FEwvolution, co-located
with ICSMO7, pages 206-214, 2007.

[16] D. Roberts, J. Brant, and R. Johnson. A Refactoring Tool for Smalltalk.
Theory and Practice of Object Systems, 3(4):253-263, 1997.

[17) F. G. Tinetti, P. G. Cajaraville, J. C. Labraga, M. A. Lépez,
and M. G. Olguin. Reverse Engineering Applied to Numerical
Software: Climate Models (in Spanish). X Workshop de Inves-
tigadores en Clencias de la Computacion, pages 434-438, 2008.
http://hpclinalg.webs.com/hpclinalg_en.html.

[18] F. G. Tinetti, M. A. Lépez, and P. G. Cajaraville. Fortran Legacy
Code Performance Optimization: Sequential and Parallel Processing
with OpenMP. World Congress on Computer Science and Information
Engineering, pages 471-475, 2009.

14

