LU Factorization: Analysis of the Broadcast-Based Parallel
Algorithm for Clusters

Fernando G. Tinetti*
Investigador Asistente CICPBA, TTT-LIDI
Facultad de Informatica, UNLP
50 y 115, 1900, La Plata

Argentina

Technical Report PLA-001-20057
March 2005

Abstract

This report is specifically focused on the analysis of the broadcast-based parallel 1.U matrix fac-
torization in order to have a prediction performance measure for the algorithm. Also, this prediction
performance measure can be used for comparison with other parallel algorithms proposed for the
same task -1.U matrix factorization. Some experiments are presented to verify the accuracy of the
performance prediction as well as to compare with the Scal. APACK performance of the parallel T.U
matrix factorization. This report should be understood in the context of two previous technical re-
ports: “T.U Factorization: Number of Floating Point Operations and Parallel Processing in Clusters”
and “Guidelines for Parallel Tinear Algebra on Ethernet-Based Clusters: Matrix Multiplication and

1.U Factorization Results”.

*fernando@info.unlp.edu.ar
tPT,A stands for Parallel Linear Algebra

1 Introduction

The T.U factorization algorithm as well as the number of operations required has been defined and/or
analyzed in [13]. The number of floating point operations of the traditional method, LU flops, is exactly

given by
n—17% m-1)? (n-1) n>—n
1
3 + 2 + 6 + 2 (M)

LU flops = 2 (

which is nsually referred to as 2n%/3 [9]. Sequential as well as parallel approaches are based in the
block-processing right-looking algorithm [9] [2] [8], defined in terms of a partition such as that shown in
Fig. 1, where bs is the block size selected to optimize the sequential and/or parallel performance. From

A A | bs
1 12
A=
A A n-bs
21 22
bs n-bs

Figure 1: Block Partition of a Matrix.

a matrix partition such as that shown in Fig. 1, computing is made by LU factorizing Ay and updating
the trailing matrix,i.e. Ayq, Aar, and Ags. In terms of the partition shown in Fig. 1, the LU factorization
to be computed is such that

22

Figure 2: Partition of Matrices A, 1., and U.

ie.,
Ay = Ly x Uy (2)
Avg = L1 x Uy (%)
Aoy = Loy x Uy (4)
Agy = Loy x Upg + Loy x Usg (5)

And, as explained above, the A;1 block is factorized and the rest of the blocks are updated in order to
compute matrices I and /. Having factorized the Aq; block implies having 11 and U4, i.e., the whole
Eq. (2) above is completely computed. Tt is necessary to obtain Lis, Uia, Las, and Uss. To obtain Uy,
and Lay Ec. (6) and Ec. (7) are applied respectively, which are derived from Ec. (3) and Ec. (4) above
respectively:

Uis = Ly x A (6)
LQ] = AQ] X (]1711 (7)
Tt is important to note that T/fﬂ and Ufﬂ are very easy to calculate from 717 and Uy since these

matrices are triangular (lower and upper tiangular respectively). Tn terms of BLAS (Basic Linear Algebra
Subroutines) [7] [11], U2 and Lgq are obtained by using directly the functions to solve triangular systems

of equations with multiple right hand sides, TRSM. The remaining problem is to find out a9 and Uss, and
for this task, Ec. (5) is used according to Ec. (8)

[122 X []22 = A22 — fz21 X U12 (8)

Thus, finding out a9 and sy from Ags 18 the same as finding out ©9s and Usy from Ags — Loy x Uys,
i.e. Ags 18 updated to have Aqg — Loy x U9 and the same blocking procedure can be directly applied to
the npdated submatrix Asq. The blocking procedure is intensively and successfully used in sequential as
well as parallel approaches.

The broadcast-based parallel LU matrix factorization has been defined in [14] using the ideas pre-
sented in [15] [12] [13]. The matrix partitioning is chosen following the so-called row block cyclic matrix
distribution [10]; the matrix is divided in many more blocks than computers and assigned cyclically as
shown in Fig. 3 for four processors Py, ..., Py, where a block size (bs) has to be defined. Each row block
has bs rows, i.e., bs X n elements. This matrix distribution among computers can be defined in general

P] bs
P
2
P
3
P
4
A=
P
1
P
2
P
3
P, bs

Figure 3: Row Block Cyclic Partitioning.

as follows. Tf a matrix of order n is divided into row blocks of size bs, there will be nb = n/bs row blocks
by, ..., rhyy to be assigned among the available computers. In general, processor P; will have blocks rb;
such that ¢ = (j — 1) mod p+ 1, 1 < j < nb, where p is the number of computers (Py,..., P,). Tn
this context, when factorizing a matrix block of bs x n elements, three of the submatrices of Fig. 2 are
found: Ly, U1, and Uy as shown in Fig. 4. The three other submatrices (La1, Laa, and Uss) are found

bs| A A =L 0 X OU“ U, | bs

11 12 1 B

bs n-bs bs n-bs bs n-bs

Figure 4: LU on a Row Block.

following the same guidelines as in the case of the two-dimensional matrix distribution. Matrix 7o is
found by computing lo1 = Agy X Ufﬂ, Eq. (7), using BLLAS TRSM, and matrices Loy and Uss are obtained
applying the same procedure to the updated matrix Ags — Loy x Uss. Fig. b shows the pseudocode of
the process for computer P; with which the whole broadcast-based parallel .U factorization algorithm
can be defined, where

e p is the total number of computers used in parallel for the LU factorization, identified from 0 to
p-1.

e nb is the total number of blocks, which depends on the blocking size bs. Blocks are globally
numbered across computers from 0 to nb, i.e., computer P; (0 < i < p-1) has blocks i mod p.

e On the line Factorize block j matrices [, and U are obtained from block j with partial pivoting,
which is used for numerical stability.

if (i == 0)
Factorize and send_broadcast block 0
for (j = 0; j < nb; j++)

{
if (i == (j mod p)) /#* Current block is local */
Update local blocks
else if (i == ((j+1) mod p)) /* Next block is local */
{
recv_broadcast_b (factorized block j)
Update and Factorize block j+1
send_broadcast_b (factorized block j+1)
Update local blocks (block j+1 already updated)
}
else /* P_i does not hold block j nor block j+1 */
{
recv_broadcast_b (factorized block j)
Update local blocks (block j+1 already updated)
}
}

Figure 5: Parallel .U Matrix Factorization Algorithm with Overlapped Communications.

e The trailing matrix is, in fact, “the” Ay defined above, which is updated via a matrix multipli-

cation.

e send_broadcast_b and recv_broadcast_b are the functions to send and receive broadcast mes-

sages 1n background respectively.

The algorithm defined in Fig. 5 contains the idea of next block to the classical algorithm. Given that
the LU factorization and its corresponding broadcast message impose waiting (possible for a long time in
Ethernet-based clusters) on p— 1 computers, the next block is factorized and sent ahead (in background)
allowing overlapped communication with local computing. Basically, the broadcast operation is intended
to complete while every computer is updating the trailing matrix.

2 Performance Analysis of the Parallel Algorithm

The idealized case in which computing and communication are overlapped and there is no overhead due
to broadcast messages (except, for the communication of the first block) is shown in Fig. 6. Most of the

Proco Proc . Proc

nb-1

Beast | —» e > —» | Proc,

Bcast Bcast Bcast
1 2 nb .
[ime

»
»

Figure 6: Overlapped Computing and Communication.

local computing time in each computer (shown as Proc; on Fig. 6) is mainly due to the trailing matrix
update which includes a matrix multiplication. The following performance analysis is made taking into
account:

1. The distribution of the trailing matrix update.
2. That Communication is carried out concurrently with computing (in background).

From the point of view of the program running on each computer, whose pseudocode is shown 1in Fig. 5,
on each iteration j, computers execute one of the three alternatives defined in the pseudocode, as shown
in Fig. 7. On iteration j, processor holding the current block, P; .4, , just updates the rest of the local
blocks of the trailing matrix, i.e. rb; with k& > j. This is shown in Fig. 7 with the sequence

jmodp 1 I
‘ Piv(local#j) ‘ ‘ L, (local#j) ‘ ‘ A (local#j)
i‘Sending Broadcast
Jj+1 modp i 7777777 i
PivGD| [LG4 | [4,6+D] [LUGHD]|| Pivitocaiis) || L docai#isn) || A docalj1)
» i‘Receiving Broadcast
k : .
Gimir 1| Pivlloca) || L,ocal) || 4, Qocal)

| Time
n >

i
Figure 7: Computing on Each Processor.

e Piv(local # j): apply pivots on every local block excluding the current block,
o Loj(local # j): compute Layy on every local block excluding the current block,
o Ass(local # j): compute/update Ass on every local block excluding the current bhlock,

because the current block has been updated /computed in the previous iteration. Also, computer Pjmodp
receives in background the next current block which will be necessary in the next iteration: rb; 1. The
processor holding the next current block on iteration 3, P;i11 moap, has to update and LU factorize the
next current block. This 1s shown in Fig. 7 with the sequence:

e Piv(j+1): apply pivots only to block j + 1.

(

e Lo1(j+ 1): compute the submatrix of Ly corresponding to block j+ 1.

o Ass(j + 1): update the submatrix of Agg corresponding to block j + 1.
(

o LU(j+1): LU factorize the block j+ 1.

Once the block j + 1 is factorized it is sent in background to all the other computers (from time t; via
a broadcast routine). The rest of the processing in processor Pji1modp 18 straightforward. Most of the
computers, Py with k # (j mod p) and k # (j + 1 mod p), have simple computing and communication
tasks: update local blocks and receive in background the next current block once the broadcast sending
begins in processor Pjy1modp-

The detailed view of processing given in Fig. 7 1s accurate but may lead to confussion on relative
requirements of each individual task. Fig. 8 shows schematically that most of the time needed for each

iteration is due to communication and Ao update. There are two issues related to relative times shown
in Fig. 8:

1. The reason/s for which Asy update requirements are greater than those of applying pivots plus La;
computing and also greater than updating and LU factorizing a whole block.

2. The relationship between the time required by a broadcast communication and the time required by
an Ao update, more specifically, which one of both tasks requires more time than the other. This
relationship between the relative times 1s necessary to be able to predict the time of an iteration.

Once each iteration time can be predicted, the time prediction for the whole algorithm is straightforward.

Receiving Broadcast

jmodp —
‘ Piv, L ‘ A(ocal)
‘ Sending Broadcast
J+1 modp R i | N
Piv..LU | [Piv, L, || Aglocalgisl)
P 3 ‘ Receiving Broadcast
k ‘ L
k= j mod p, .
k¢§+1:0m(idp ‘ PlV, Lz] ‘ Azz(local) 7777777777777777777777777
i Time
n >

Figure 8: Relative Times of Computing on Each Processor.

2.1 Brief Performance Analysis of Computing Subtasks

The time required by subtasks of the algorithm should be detailed at least at the level of having a
comparison in orders of magnitude. More specifically, the processing requirements of each task shown
in Fig. 7 should be analyzed, i.e.: Piv(local # j), Lai(local # j), Asa(local #£ 7), Piv(j+1), Lai(§ + 1),
Ago(§+ 1), LU + 1), Piv(local), Lai(local), and Agy(local). Before analyzing every subtask in detail,
basically: Piv, L1, Ass, and LU computing, it is useful to show in more detail how the algorithm of Fig.
5 works on the original matrix to be factorized.

Taking into account the pseudocode of Fig. 5 and the matrix partition into row blocks shown in Fig. 3,
a matrix of n x n elements 1s processed at the beginning of the algorithm as shown in Fig. 9, where the
first block of bs x n elements is completely contained in processor Py. Before the first iteration the first

P
bs Llfjll U,
n-bs L, A22
bs n-bs

Figure 9: Processing Before the First Tteration.

block of bs x n elements is processed as a matrix and LU factization is computed, obtaining submatrices
L1, Uyq, and Uqa, and the associated factorization pivots. (Given that the matrix is partitioned into row
blocks, the first processor Py computes locally (without needing extra data/communication) submatrices
L11, Usq, and Uye, and associated pivots. From the point of view of libraries such as LAPACK [2] or
ATLAS (Automatically Tuned Tinear Algebra Software) [16] this is done via a single call to GETRF. On
the first iteration, i.e. ¢+ = 1, with ¢ = j 4+ 1, where j is the pseudo-code iteration index, several tasks
have to be done:

e Computing matrix loq.
e Updating matrix Ags.

e Computing and sending broadcast the LU factorization on the next current block.

On this first iteration, the matrix is processed as shown in Fig. 10, where

n
bs { L U“ U
11 12
} bs
n-bs L A
21 22
N
bs n-bs

Figure 10: Processing on the First Tteration.

e The shaded submatrix of bs x n elements is to be computed at processor P;.

e The dark submatrix of bs x n — bs elements is the next current block to be sent in background while
computing/updating matrices Lo and Ass in all computers, including P;.

More specifically, let #7,; the submatrix of La; to be computed on the first iteration, tU/; the matrix Ujq
to be computed before the first iteration, and £A; the submatrix of Ass to be computed on the first
iteration,

7‘,[1] e R(n,fbs)xbs
77]1 e Rbsx(nfbs)
fA] e R(n,fbs)x(nfbs)

And computing on the first iteration involves
e Applying pivots to the whole trailing matrix, including 7., and 7 A,
e Computing 11,y = Aqy X Ufﬂ =1l x Ufﬂ.
e Computing tAy = Agg — 11y x U7 =tA] — 11 x tU;.

However, the next current block (in the first bs rows of £4;) is processed in a different way, in order to he
I.U factorized and available on every computer in the next iteration of the algorithm. The dark submatrix
of 1Ay 18 updated and LU factorized in Py before updating the rest of Ay assigned to processor P;.

In general, in the i_th iteration, the processing can be schematically described as shown in Fig. 11.
And defining ¢7,;, tU;, and tA; as matrices t1.1, tU/;, and t Ay but on i_th iteration, i.e. $1; the submatrix

U
bs{ L” 11 -
} bs
7%
n-i*bs I3 A
21 22
N
bs n-i*bs

Figure 11: Processing on the i_th Tteration.

of a1 to be computed on the i_th iteration, tUU; the matrix U5 computed before the i_th iteration, and
tA; the submatrix of Ass to be computed on the i_th iteration,

1L, € [Rixbs)xbs
1, € R x(n—ixbs)

1A € B(nfi*bs)x(nfi*bs)
HA; 4
And computing on the i_th iteration involves
e Applying pivots to the whole trailing matrix, including ¢7,; and £ A;
e Computing t1,; = Agy x Ufﬂ =il; x Ufﬂ.
e Computing tA; = Aoy — 1L, x tU; =tA; —11; x tU;.
And the next current block (in the first bs rows of £ A;) is processed in a different way, in order to be T.U
factorized and available on every computer in the next iteration of the algorithm.
2.1.1 Applying Pivots on the i_th Tteration

There are several alternatives in order to apply pivots and maintain data consistency as well as numerical
stability. The minimum task to be done is trailing matrix update/pivoting with the pivots of the current,
LU factorized block. This implies updating #7,; and tA;. However, it is worth noting that:

e pivoting do not imply any floating point operation, just data movement.

e there are at most bs column interchanges, since pivots are produced /necessary on LU factorization
of a matrix with bs x (n — 7 % bs) elements on i_th iteration.

and these are the reasons for which pivoting is not taken into account from the point of view of computing
time analysis.

2.1.2 Computing t/,;

Computing t7; implies
thi = Aoy x Uy =10 x Uy

with

7‘[17 c R(n,fi*bs)xbs
[]11 e Rbsxbs

Thus, a triangular system with (n—ixbs) equations and bs unknowns is solved bs times to obtain/update
matrix t7;. Tn terms of the BLLAS library [7] [11], ¢/, is obtained by using directly the function to
solve triangular systems of equations with multiple right hand sides, TRSM. Roughly speaking, solving a
triangular system of equations with the coefficient matrix of bs x bs elements implies O(bs?) operations,
and given that the triangular system of equations is solved with n — i x bs right hand sides, the number
of floating point operations is O((n — i * bs) * bs?). Thus, in general, computing #7; requires O(n)
operations, and taking into account that bs is relatively small compared to n the hidden constant/s in
the O() notation cannot be very large. Sumarizing,

ReqFlops(tL;) = O(n) (9)
where ReqFlops(i1;) is the number of floating point operations required to compute ¢7; and, in fact, is
a measure of the computing time needed for #7,;.

2.1.3 Computing .U on the i_th Iteration: LU,

The LU factorization method on the i_th iteration is applied to a submatrix of bs x (n — i x bs) elements.
Following the description made in [13] to calculate the number of flops for LU factorization, the number

of floating points required for the factorization of a bs X (n — i x bs) elements matrix is given by

bs
ReqFlops(LU;) = > 2% (bs—i) x (n— 1)

i=1
bs

= ZQ(hs*nfbs*ifi*n—kiQ)
i=1
bs

= ZQ*bs*an*(bs—kn)*i+2*i2
i=1

which is O(n) but with more terms than ReqFlops(LU;), and some of them being bs? and bs®. However,
it 1s still remarkable that

ReqFlops(LU;) = O(n) (10)
Furthermore, analyzing the evolution of computing as i increases (more iterations are made), the number
of flops decreases, so the number of flops is very small in the last iterations taking into account the (bs—1)
and (n — i) factors in the equations above.

2.1.4 Updating 7 A;

Taking into account Fig. 8, thisis the task with the greatest floating point requirements on each iteration.
Furthermore, the whole blocking method has been designed to have most of the operations in a matrix
multiplication and this is made in the updating of £4;. in order to update the trailing matrix, a matrix
multiplication should be done. More specifically, the operation to be carried out is

fA7 = fA7 — ffq X fU7

where
fA7 c R("*i*bs)x(n*i*bs)

1L, € [Rixbs)xbs
1, € R x(n—ixbs)

Fach element of the matrix multiplication ¢1; x tU; requires 2% bs — 1 operations, and the resulting matrix
is of (n — 7% bs) x (n — i bs) elements, thus

ReqFlops(tA;) = (2xbs — 1) x (n— ixbs) * (n —i*bs)+ (n—ixbs)*(n—1xbs) (11)

Summarizing,

ReqFlops(tA;) = O(n?) (12)

2.1.5 Comparison of Subtasks Requirements

Summarizing, applying pivots requires a negligible running time, and from the previous subsections:

ReqFlops(tL;) = O(n)
ReqFlops(LU;) = O(n)
ReqFlops(tA;) = O(n?)

and these equations justify a quite more formally the running times shown in Fig. 8. Tt is worth noting
that even though not every block of tA4; is updated at the same time or concurrently, the required
number of flops is O(n?) because there is just one block updated and LU factorized ahead the rest: the
next current block.

2.2 Brief Performance Analysis of Broadcast

Unfortunately, modeling the time required for a broadcast operation is not as simple as using the well-
known model for a point-to-point communication:

t(m) = apep + Bpep ¥ m (13)

where m is the amount of data to transfer, & is the communication latency or startup cost, and 1/8p:p
s the network communication bandwidth. Timing models for broadcast communication usually depend
on the implementation selected for the broadcast routine in a specific implementation. Many imple-
mentations construct spanning trees and this implies logarithmic coefficients on the timing models. Tn
the specific case of the research being made for parallel computing in clusters, the broadcast message
implementation is such that:

e Data is physically broadcasted using UDP, and there is not retransmission unless some data have
been lost.

e Acknowledgements are received at the broadcast root from all the receivers to provide a reliable
broadcast message to the parallel application.

These details are hidden to the user (pertain to the broadcast implementation). Physical broadcast plus
the low rate at which data are lost in a local area network produce a very good scalability. However,
latency cannot be modeled as in a point-to-point message, since the time required for broadcast acknowl-
edgement /s and other tasks related to synchronization are found to be proportional to the number of
computers involved in the communication. GGiven that data is sent as in a point-to-point operation and
there is a very low rate of message loss, the time required for data transmission through the network can
be modeled as in the point-to-point messages, i.e. (Bpeast *m) in Eq. (13), with Bueass = Bptp because the
data bandwidth of the broadcast routine is not necessarily the same as that of point-to-point messages,
and m = bs x (n — i *bs) in the i_th iteration. More specifically, one block has to be broadcasted on each
iteration, whose size is m = bs * (n — i * bs). However, ackowledgements sent from receivers to the root
attempt against scalability, because these messages cannot be received simultaneously at the broadcast
root. Even when there are multiple ways of avoiding such performance drawback, 1t is still possible to
analyze the time required by broadcast messages (and the parallel program using this broadcast version)
from the point of view of the time required for communication. Summarizing, the timing model for the
broadcast operation in the i_th iteration is

t(bcast(i,p)) = ap + Ipp *x (p — 1) + Bocast * bs x (n — i x bs) (14)

where ay is the latency of the broadcast implementation independently of the number of computers
involved, Ipp is the latency per processor of the broadcast implementation, p—1is the number of receivers
in a broadcast operation, and Eq. (14) is the timing model of the broadcast implementation used in the
current version of the parallel LU factorization algorithm.

2.3 Computing and Communication Time Requirements

Taking into account the pseudocode in Fig. 5 and the algorithm behavior described in Fig. 8, computing
tA; and broadcast communication of the next current block in each iteration should be compared. The
broadecast communication time in the i_th iteration is given in Eq. (14), but the computing time in each
iteration has been only partially given above.

The number of floating point operations for updating the trailing matrix is given in Eq. (11). Two
important factors should be taken into account for modeling the computing time:

e The processing workload is evenly distributed amongst p computers, and each one of them has to
carry out 1/p of the total workload. Thus, computing is made simultaneously in p computers and
the required time is reduced by a factor of p.

e The time required for a single floating point operation, which has to be used to translate from
processing workload in terms of number of floating point operations to computing time.
Rewriting Eq. (11)
ReqFlops(tA;) = (2xbs—1)x(n—ixbs)x(n—ixbs)+ (n—1ixbs)«*(n—1ixbs)
(2% bs — 1) % (n —ixbs)” + (n —ix%bs)”
(n —ixbs)? % ((2xbs — 1)+ 1)
2% bs* (n — i % bs)? (15)

10

Taking into account that the processing workload is evenly distributed amongst p computers, the expected
time required for floating point operations on each computer in iteration 7 is modeled by

tf*x ReqFlops(tA;)

P
tf*2%bs* (n —ix%bs)?

_ (16)

p

et(tA;,p) =

where tf is the time required for a single floating point operation.
Taking into account Eq. (15), Eq. (14), and Fig. &, the time required to complete the parallel
algorithm on p processors i1s given by

n/bs
et(par LU, p) = Z mazx(et(tA;, p), t(becast(i, p))) (17)

i=1

Tt is expected that the numerical computing time in the first iterations is greater than the time required
by broadcast communications. Also, given that

e the trailing matrix 1s made smaller as more iterations are completed, and
e broadcast message latency is constant from the point of view of trailing matrix size,

there is some iteration value k, for which computing time is lower than communication time, 1.e.,

et(tA;,p) > i(beast(i,p)); i<k
et(tA;,p) < i(beast(i,p)); i>k

and Eq. (17) becomes

k n/bs
et(par LU, p) = Zet(t%\i,p) + Z t(bcast(i,p)) (18)
i=1 i=k+41

The specific value of k 1s dependent on many factors, and the analysis would be highly simplified if it were
known a priori. More specifically, the analysis can be made by finding out the value at which computing
time is equal to communication time, i.e.

tf*2xbsx(n—ixbs)?
P

=ap+Ipp* (p— 1) + Bocast * bs* (n — i * bs) (19)

For a fixed value of p ap + Ipp * (p — 1) is constant, and given that (n — 7 % bs) changes with i

o, = ap+lppx(p—1) (20)
is = n—1ixbs (21)

Thus, Eq. (19) can be rewritten as
((tf *2xbs)/p) * is? = p + Bbeast * bs * is (22)

which can be rewritten as the quadratic equation

((tf *2xbs)/p) * 5% — Bheast * bs x is — ap, =10
((tf *2xbs)/p) %157 4 — Bpeast * bs xis + —ap =0
S———m™ S——

———
a b c
1.e.
axis’ +bxis+e=0 (23)
with
a = (#f*x2xbs)/p (24)
b = *ﬁbcast x bs (25)
e = —ap (26)

11

and the values of is which satisfy Eq. (23) are given by the quadratic formula

B —b+ Vb2 —4xaxc

2%a

18

(27)

A quite deeper analysis is now needed to find out at least if it can be assured that the square root is
applied to a number greater than 0. Taking into acount Eq. (24) and Eq. (25), the term

—Adxaxe=—4x((If x2xbs)/p)*(—ap) =4*xa,* (Ef*x2xbs)/p>0 (28)

and, thus,
b —dxaxe>0

and there will be two values € IR from the results of the square root to such expression. Now, it is
necessary to know which value of is will be used, given that Eq. (27) provides two. Defining

7b+|\/b274*a*c|

7:S+ = 2 ¥ (29)
and
. 7b7|\/b274*a*c|
15 = (30)
2%a

it is necessary to know whether isy or is_ will be used. Taking into acount Eq. (28),

‘\/b274*a*c >‘\/b_2

thus,
—|—‘\/b274*r1,*(: > [b] (32)
and, given that b < 0,
—|—‘\/b274*a*c>fb (33)
and this implies
fbf‘\/i)274*a*c<0:>is,<0 (34)

Tn fact, this value of is_ should be used to find out the value of k, and using Eq. (21),

n—is_
k_ = 35
T (35)
but, given that is_ <0,
b n—is_ _n N —i5_ S n (36)
T bs bs bs bs '
and this value of k is not, useful, since k should be such that 1 < k < n/bs acording to Eq. (18). On the
other hand,
fb—|—‘\/i)274*a*c>0:>is+>0 (37)
and))
n—isy n o isy n
ky = =———< — :
+ bs bs bs < bs (38)

and this value, k4, has to be used for k in Eq. (18) or, in fact, the integer number immediately greater
than ki as defined in Eq. (38).

Summarizing, the expected time for the broadcast-based parallel LU factorization algorithm with the
broadcast implemented such as described in subsection 2.2 for a fixed number of computers is

k n/bs
et(parLU,p) = Zet(t%\i,p) + Z t(bcast(i,p))
i=1 i=k+1
k . n/bs
tf % 2% bsx (n —i*bs)”
e]‘,(p(],rf,[ﬁp) = Z f* * 9*(77 X 9) + Z O/p—|—ﬁ*})8*(n*7j*})8) (3('))
. P .
=1 i=k+41

12

with
N e rrer]

77,*7:84_ n-— 2%
ko= = 40
bs bs (40)
i 2 % b
a = tf*x2xbs (41)
P
b = 7ﬁbcast x bs (42)
e = —ap (43)

where
e bs is the block size used for the parallel algorithm.
e 1f is the time required for a single floating point operation.

® 1/Bpeast 18 the network communication bandwidth achieved with the broadcast communication
routine.

o «ay is the communication latency or startup cost of the broadcast communication routine with p
computers.

p 1s the fixed number of computers.

3 Comparison with ScaLAPACK: Performance Analysis
The expected time for the Scalapack LU factorization algorithm is well known [4] [5] [3]:

2 % n? 341 4) % n?
et(SealLU,p) = " tf + (0g2(P)/4) * n Bptp + (6 + Loga(p)) * 0 apyp (44)

3xp Nz

where oy, and By, are the message latency and the inverse of the bandwidth for point-to-point messages

respectively, and the rest of parameters/coefficients have already been explained and used. Some different,
points of view prevent a direct comparison between Eq. (39) and Eq. (44) above. The first different
approach in modeling the required time is on the number of floating point operations. The first term of
FEq. (44) reflects the number of floating point operations in Scal, APACK’s timing model: 2/3n?. This is
the traditional number of operations for the sequential LU factorization as given in the literature [9]. The
timing model given for the proposed parallel algorithm takes into account that most of the computing
time is needed for the trailing matrix update whose number of operations is given in Eq. (15) for the i_th
iteration. However, both algorithms are directly based on the blocked TI.U factorization, so the number
of floating point operations should be the same and a deeper comparison analysis is not necessary to
determine which one -Eq. (39) or Eq. (44)- is more accurate.

The Scal,LAPACK timing model for communication is reflected in the second and third terms of
Eq. (44). The first strong difference with the approach proposed in this report is that ScaLAPACK’s
communication costs are taken into account for every block/element of the matrix. On the other hand,
for the approach proposed in this paper, Eq. (17) and Eq. (18) directly reflect that a broadcast commu-
nication adds time to the total expected algorithm time only when 1t is greater than the corresponding
trailing matrix update time. Even if the numerical computing time is greater than the broadcast time
in only a few iterations -e.g. k = 20 or k = 30 in Eq. (18), the communication time (in those iterations)
would not add time to the total processing time, since it is overlapped with numerical computing. How-
ever, the broadcast timing model of Eq. (14) is far from optimal and implies at least that the latency
grows linearly with the number of processors. On the other hand, Scal,APACK relies on spanning trees
and, thus, the timing model implies a logarithmical growth depending on the number of processors.

The next subsection will show a small example of the expected time for each algorithm on a current
cluster. The specific values of parameters needed for modeling the performance of each algorithm are
given, along with their similarities/differences.

3.1 Expected Times: Specific Example

Having a real cluster, it is possible to calculate the expected time of each parallel algorithm using Eq. (44)
and Eq. (39) for the ScaLAPACK and the broadcast-based .U factorization algorihtms respectively. The

13

Table 1: Cluster Characteristics.

Clock | Mem | Mflop/s (DGETRF)
2.4 GHz | 1 GB = 2500

specific cluster is composed of 20 identical computers, whose characteristics are summarized in Table 1
and the interconnection network is 100 Mb/s Ethernet with complete switching. The specific values for
the parameters required by the Scal,LAPACK time model are given in Table 2, where 3,,, and oy, were

Table 2: Scal. APACK’s Parameter Values.

Parameter Value
p 20
tf (2500 % 10%) 7" sec.
Bptp (11.6/8 ¥ 10%) ™" sec.
Ypip 200 % 10~° sec.

measured with the MPTICH implementation of MPI, using the ping-pong program distributed along with
the implementation. Given the memory available on each computer and the number of computers, the
matrix size was set to n = 45000. The expected running time of the ScaLAPACK’s LU on the cluster
with 20 computers just described is computed using Eq. (44):

et(SealLU,20) = 2582 sec. (45)

Taking into account that
e 20 computers of approximately 2.5 Gflop/s have a computing power of aproximately 50 Gflop/s,

e the total number of floating point operations required for a I.U factorization of a matrix of 45000 x

45000 elements is 2/3 * 450003,

the theoretical (minimum) time for 20 computers is given by
(LU, 20) = 1215 sec. (46)

And this implies that the expected (parallel) efficiency of the Scal,LAPACK parallel T.U factorization
algorithm is

H(LU,20) 1215 _
et(ScalLlUI,20) — 2582

Thus, 1t 1s expected that the Sca, APACK parallel .U matrix factorization algorithm will make use of less
than 50% of the available computing power of this specific cluster. .U matrix factorization is specially

ee(SealV,20) =

0.47 (47)

penalized in Scal,APACK’s two dimensional matrix distribution due to the partial pivoting needed for
numerical stability. Partial pivoting implies a collective communication in a row or a column of processors
(for pivot selection) which implies a group communication penalization in an algorithm defined mainly
for point-to-point communications. (Given that the proposed parallel .U matrix factorization distributes
data by column block or row block, this penalization is not found.

On the other hand, the specific values for the parameters required by the time model of the parallel
LU matrix factorization proposed in this report are given in Table 3. The values of p and #f are exactly
the same as those given in Table 2, for the Scal, APACK analysis. The data bandwidth obtained by the
broadcast routine implemented on top of UDP, 1/By.45+ 1s similar to that obtained by MPTCH point-to-
point messages. More specifically, the data bandwidth of the implemented broadcast routine is about
13.8% worse than that obtained by MPTICH point-to-point messages. The communication latency of the
implemented broadcast routine for 20 computers, «,, is much worse than that of the MPICH point-to-
point messages. One of the reasons has been explained above: acknowledgements are sent from every
receiver (19 in this specific case) to the sender. More specifically, the value of o, is about three orders
of magnitude worse than ay,,. The parameter bs in Table 3 is relatively new because there is not a
similar parameter for the Scal,APACK analysis. However, Scal.APACK routines do need such a value

14

Table 3: Broadcast-Based Parameter Values.

Parameter Value
p 20
tf (2500 % 10°%) =7 sec.
ﬁbcast (10/8 * 106)71 sec.
Yp 0.1 sec.
bs 64

for running on a given parallel platform (and, also, that of the processors grid configuration). There are
not many possible values for bs, being 32, 64, and 128 the most used in the Scal,APACK references. The
same values (32, 64 and 128) could be used for the broadcast-based parallel LU factorization analysis,
64 was finally used in the experiments. The matrix size was set as for the Sca, APACK analysis, i.e.
n = 45000. The expected running time of the proposed parallel LU factorization routine on the cluster
with 20 computers just described is computed using Eq. (39). The first value to be obtained is the
specific iteration in which communication time is greater than computing time, k in Eq. (40):

k=363 (48)

and this means that the communication time of the first 363 iterations is expected to be hidden by the
the computing time. Also, 1t is worth noting that the rest of the iterations

) 45000
n L=

— k= — 363 =703 — 363 = 34
s ol 363 2 703 — 363 = 340

computing is hidden by communication time, i.e. computing time is not added to communication time,
since communications are carried out concurrently. Now, it is possible to obtain the expected time for
the parallel LU factorization using Eq. (39):

et(par LU, 20) = 1298 sec. (49)

which is very near the maximum theoretical time, #1(LU, 20) = 1215 seconds. The expected efficiency of
the broadcast-based parallel I.U factorization is

#(LU,20) 1215
et(parLU,20) — 1298

ee(par LU, 20) = ~0.94 (50)

Thus, it is expected that the proposed parallel .U matrix factorization algorithm will use about 94% of
the available computing power of this specific cluster.

From the point of view of the analysis, the proposed parallel algorithm is far better than the Scal.A-
PACK algorithm for parallel LU factorization at least on this specific cluster. The Scal.APACK algorithm
is expected to use 47% of the available computing power while the proposed parallel algorithm is expected
to use about 94% of the available computing power. The experimentation should make clear the accuracy
of the time models as well as the real performance difference between both algorithms at least on the
specific cluster described in this section.

4 Comparison with ScaLAPACK: Experimentation

Some simple experimentation will clarify the comparison on a real environment. Computers (PCs) used
for experimentation have the characteristics summarized above in Table 1, which is copied here

Clock | Mem | Mflop/s (DGETRF)
2.4 GHz | 1 GB = 2500

and the interconnection network is 100 Mb/s Ethernet with complete switching. Performance in the table
above is given in Mflop/s and DGETRF, the sequential .U matrix factorization with double precision
floating point number representation, was used to measure sequential performance.

The total number of available computers is 20, and experiments were made with 2, 4, 8 16, and
20 computers. Matrix sizes are scaled up according to the number of computers and memory available.

15

Local /sequential computing is made by using fully optimized ATLAS BLLAS (Automatically Tuned TLinear
Algebra Software BLAS) [16]. Scal,LAPACK communication is made as usual: BLACS (Basic Linear
Algebra Communication Subroutines) implemented on top of MPICH implementation of MPI. Every
possible bidimensional processors grid P x @ was considered for ScalLAPACK routines, e.g. for 16
processors, the experimental grids were: 1x16, 16x1, 2x8, 82, and 4x4. Also, square block sizes were
used for Scal,APACK routines: 16, 32, 64, 100 and 128. The proposed algorithm does not need to define
a bidimensional processors grid, and the block values used for experimentation are the same as those used
for Scal,APACK routines. Given the one-dimensional matrix partitioning and distribution described for
the algorithm, the matrix is divided in row blocks instead of square blocks.

Figure 12 shows the parallel perfomance measured as efficiency for LU matrix factorization on different
number of computers from 2 to 20. The matrix order (size) for each number of computers is shown
between parenthesis on the x axis. Bars show the best efficiency value obtained by the algorithms for each
number of computers. Tight gray bars labeled as “Sca” correspond to values obtained by Scal,APACK’s
PDGETRF. Dark gray bars labeled as “Prop” correspond to values obtained by the proposed parallel T.U
matrix factorization algorithm. Tt is worth to mention the similarity among the ScaLAPACK’s results

0.9 — —_— — []Sca [Prop

0.8 -
0.7 -
0.6 — -
0.5 — -
0.4 — _— L
0.3 — -
0.2 _— -
0.1 - — -

Efficiency

2 (14000) 4 (20000) 8 (29000) 16 (41000) 20 (45000)
Number of Computers(M atrix Order)

Figure 12: LU Matrix Factorization Efficiency.

shown in Fig. 12 with those in [5], where Scal,APACK is used for LU matrix decomposition and linear
equation system solving. Tn Fig. 12 as well as in [5] the efficiency is about 0.5 (or 50% of the total
available computing power).

Experiments made using different numbers of computers -2, 4, 8 16 and 20- make it possible to
evaluate the performance from the point of view of scalability. This scalability analysis can be made
with the timing models given in the previous subsection. The proposed algorithm performance 1s better
than that implemented in Scal,APACK from the point of view of “raw” efficiency and performance
degradation from 2 to 20 computers. The proposed parallel LU matrix factorization algorithm efficiency
for 20 computers is about 7% worse than the efficiency for 2 computers, while SaLAPACK efficiency
for 20 computers is about 23% worse than the efficiency for 2 computers. At least for this cluster, the
scalability of the proposed algorithm 1s better than that of the Scal,APACK algorithm.

5 Conclusions and Further Work

The timing model of the broadcast-based parallel I.U matrix factorization has been introduced in this
report. This timing model can be used for performance prediction as well as for performance comparison
with other approaches for parallel .U matrix factorization.

From the analytical point of view, the parallel LU matrix factorization algorithm is expected to obtain
very good performance (speedup and efficiency) values. More specifically, using the time model given for
the algorithm the expected efficiency on a cluster with 20 computers is about 0.94, i.e. 1t is expected to
use about 94% of the available computing performance on a specific cluster with 20 computers. Using
the timing model of the Scal, APACK parallel .U matrix algorithm for the same cluster, the expected
efficiency is about 0.47, i1.e., the Scal.APACK parallel I.U matrix factorization algorithm expects to use
less than 50% of the available parallel performance.

FExperiments have shown that the broadcat-based parallel T.UJ matrix factorization algorithm obtains
better performance values than the Scal,APACK approach on a specific cluster. Also, experiments have

16

shown that timing models for both parallel algorithms are very accurate at least for the total number of
computers available for experimentation. Table 4 shows the summary of the timing models as well as the
experimentation for 20 computers. Values in the column Expected Eff. are obtained using the timing

Table 4: Summary of Values for 20 Computers.

Algorithm Expected Eff. | Experim. Eff. | Accuracy | % Better (Experim.)
ScalLAPACK 0.47 0.44 +6.8% -
Broadcast-Based 0.94 0.86 +9.3% 95.45%

models for the algorithtms and values in the column Experim. Eff. are those obtained in the experiment
on the current cluster with 20 computers. Timing models accuracy is shown in the column Accuracy
of Table 4 and the last column show that the broadcast-based algorithm obtains more than 95% better
performance than the Scal,APACK algorithm on this specific cluster.

Table b shows the summary of the experimentation in the cluster. Valuesin the columns Scal,APACK
Eff. and Broadcast-Based Eff. were obtained in the experimentation on the clusters with different
numbers of computers. Values in the column % Better (Broadcast-Based) show that the broadcast-

Table 5: Experimentation Summary.

Number of Computers | Scal,APACK Eff. | Broadcast-Based Eff. | % Better (Broadcast-Based)
2 0.57 0.92 61.2%
4 0.59 0.92 56.49%
8 0.48 0.93 92.01%
16 0.45 0.9 99.36%
20 0.44 0.86 95.35%

based LU factorization algorithm obtains much better performance than the Scal,LAPACK LU matrix
factorization algorithm. Furthermore, as the number of computers is greater, the difference in performance
between both algorithms 1s better for the broadcast-based one, thus showing that the broadcast-based
algorithm has better scalability than the Scal,APACK algorithm.

17

References

[1]

[2]

[15]

Anderson E., 7. Bai, C. Bischof, J. Demmel, .J. Dongarra, .J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, D. Sorensen, “LAPACK: A Portable Linear Algebra Library for High-Performance
Computers”, Proceedings of Supercomputing ’90, pages 1-10, TEEE Press, 1990.

Anderson E.| 7. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammar-
ling, A. McKenney, S. Ostrouchov, D. Sorensen, LAPACK Users’ Guide (Second Edition), STAM
Philadelphia, 1995.

Blackford T.., J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, 1. Dhillon, .J. Dongarra, S. Hammar-
ling, G. Henry, A. Petitet, K. Stanley, D. Walker, R. Whaley, Scal,APACK Users’ Guide, STAM,
Philadelphia, 1997.

Chen 7., J. Dongarra, P. Luszczek, K. Roche, “Self adapting software for numerical linear algebra

and LAPACK for clusters”, Parallel Computing 29, pp. 1723-1743, Elsevier B.V., 2003.

Chen 7., J. Dongarra, P. Luszczek, K. Roche, “The LAPACK for Clusters Project: an Example
of Self Adapting Numerical Software”, Proceedings of the 37th Hawai International Conference on

System Sciences, pp. 1-10, 0-7695-2056-1/04, TEEE, 2004.

ChoiJ., J. Dongarra, I.. Ostrouchov, A. Petitet, D. Walker, R. Whaley, “The Design and Implementa-
tion of the ScaLAPACK T.U, QR, and Cholesky Factorization Routines”, Report. ORNT,/TM-12470,

Sep. 1994. Also available as a “lawn”.

Dongarra J., J. Du Croz, S. Hammarling, R. Hanson, “An extended Set of Fortran Basic Linear

Subroutines”, ACM Trans. Math. Soft., 14 (1), pp. 1-17, 1988.

Dongarra J., D. Walker, “Libraries for Linear Algebra”, in Sabot G. W. (Ed.), High Performance
Computing: Problem Solving with Parallel and Vector Architectures, Addison-Wesley Publishing
Company, Inc., pp. 93-134, 1995.

Golub G., C. Van Loan, Matrix Computations, 2nd Edition, The John Hopkins University Press,
1989.

Kumar V., A. Grama, A. Gupta, G. Karypis, Introduction to Parallel Computing. Design and
Analysis of Algorithms, The Benjamin/Cummings Publishing Company, Tnc., 1994.

Lawson C., R. Hanson, D. Kincaid, F. Krogh, “Basic Linear Algebra Subprograms for Fortran
Usage”, ACM Transactions on Mathematical Software 5, pp. 308-323, 1979.

Tinetti F. G., “Cémputo Paralelo en Redes de Estaciones de Trabajo para Aplicaciones Basadas en
Algebra Tineal” | Fernando G. Tinetti, Reporte Técnico PP004 - 01, Centro de Técnicas Analdgico-
Digitales (CeTAD), Fac. de Tngenieria, Laboratorio de Tnvestigacion y Desarrollo en Tnformatica
(LIDI), Facultad de Tnformética, Laboratorio de Quimica Tedrica (LQT), CEQUINOR, Departa-
mento de Quimica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Julio de 2001.

Tinetti F. G., “I.U Factorization: Number of Floating Point Operations and Parallel Processing in
Clusters” | Laboratorio de Tnvestigacién y Desarrollo en Tnformatica (LTDT), Facultad de Tnformatica,
Universidad Nacional de TLa Plata, Mayo de 2003, Reporte Técnico PT.A-001-2003.

Tinetti F. G., “Guidelines for Parallel Linear Algebra on Ethernet-Based Clusters: Matrix Multi-
plication and LU Factorization Results”, Laboratorio de Investigacion y Desarrollo en Informatica
(LIDI), Facultad de Tnformatica, Universidad Nacional de TLa Plata, Junio de 2003, Reporte Técnico
PLA-002-2003.

Tinetti F. G., E.TLuque, “Parallel Matrix Multiplication on Heterogeneous Networks of Worksta-
tions” | Proceedings VIIT Congreso Argentino de Ciencias de la Computacién (CACIC), Fac. de
Ciencias FExactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina, p. 122, Oct.
2002. Available at http://lidi.info.unlp.edu.ar/ fernando/publis/pmm.pdf

Whaley R. C.; A. Petitet, J. J. Dongarra, Automated Empirical Optimization of Software and the
ATT.AS Project. Available at http://www.netlib.org/lapack/ lawns/lawn147.ps

18

