
LU Fa
torization: Analysis of the Broad
ast-Based ParallelAlgorithm for ClustersFernando G. Tinetti�Investigador Asistente CICPBA, III-LIDIFa
ultad de Inform�ati
a, UNLP50 y 115, 1900, La PlataArgentinaTe
hni
al Report PLA-001-2005yMar
h 2005Abstra
tThis report is spe
i�
ally fo
used on the analysis of the broad
ast-based parallel LU matrix fa
-torization in order to have a predi
tion performan
e measure for the algorithm. Also, this predi
tionperforman
e measure
an be used for
omparison with other parallel algorithms proposed for thesame task -LU matrix fa
torization. Some experiments are presented to verify the a

ura
y of theperforman
e predi
tion as well as to
ompare with the S
aLAPACK performan
e of the parallel LUmatrix fa
torization. This report should be understood in the
ontext of two previous te
hni
al re-ports: \LU Fa
torization: Number of Floating Point Operations and Parallel Pro
essing in Clusters"and \Guidelines for Parallel Linear Algebra on Ethernet-Based Clusters: Matrix Multipli
ation andLU Fa
torization Results".

�fernando�info.unlp.edu.aryPLA stands for Parallel Linear Algebra 1

1 Introdu
tionThe LU fa
torization algorithm as well as the number of operations required has been de�ned and/oranalyzed in [13℄. The number of
oating point operations of the traditional method, LUflops, is exa
tlygiven by LUflops = 2�(n� 1)33 + (n� 1)22 + (n� 1)6 �+ n2 � n2 (1)whi
h is usually referred to as 2n3=3 [9℄. Sequential as well as parallel approa
hes are based in theblo
k-pro
essing right-looking algorithm [9℄ [2℄ [8℄, de�ned in terms of a partition su
h as that shown inFig. 1, where bs is the blo
k size sele
ted to optimize the sequential and/or parallel performan
e. From
=

A
11

A
12

A
21

A
22

bs n−bs

bs

n−bs

AFigure 1: Blo
k Partition of a Matrix.a matrix partition su
h as that shown in Fig. 1,
omputing is made by LU fa
torizing A11 and updatingthe trailing matrix, i.e. A12, A21, and A22. In terms of the partition shown in Fig. 1, the LU fa
torizationto be
omputed is su
h that
L

11
0

L
22

 0

 0
L

21

×

U
11

0
U

22

 0

 0

U
12

A
11

A
12

A
21

A
22

A

=

L UFigure 2: Partition of Matri
es A, L, and U .i.e., A11 = L11 � U11 (2)A12 = L11 � U12 (3)A21 = L21 � U11 (4)A22 = L21 � U12 + L22 � U22 (5)And, as explained above, the A11 blo
k is fa
torized and the rest of the blo
ks are updated in order to
ompute matri
es L and U . Having fa
torized the A11 blo
k implies having L11 and U11, i.e., the wholeEq. (2) above is
ompletely
omputed. It is ne
essary to obtain L12, U12, L22, and U22. To obtain U12and L21 E
. (6) and E
. (7) are applied respe
tively, whi
h are derived from E
. (3) and E
. (4) aboverespe
tively: U12 = L�111 � A12 (6)L21 = A21 � U�111 (7)It is important to note that L�111 and U�111 are very easy to
al
ulate from L11 and U11 sin
e thesematri
es are triangular (lower and upper tiangular respe
tively). In terms of BLAS (Basi
 Linear AlgebraSubroutines) [7℄ [11℄, U12 and L21 are obtained by using dire
tly the fun
tions to solve triangular systems2

of equations with multiple right hand sides, TRSM. The remaining problem is to �nd out L22 and U22, andfor this task, E
. (5) is used a

ording to E
. (8)L22 � U22 = A22 � L21 � U12 (8)Thus, �nding out L22 and U22 from A22 is the same as �nding out L22 and U22 from A22 � L21 � U12,i.e. A22 is updated to have A22 � L21 � U12 and the same blo
king pro
edure
an be dire
tly applied tothe updated submatrix A22. The blo
king pro
edure is intensively and su

essfully used in sequential aswell as parallel approa
hes.The broad
ast-based parallel LU matrix fa
torization has been de�ned in [14℄ using the ideas pre-sented in [15℄ [12℄ [13℄. The matrix partitioning is
hosen following the so-
alled row blo
k
y
li
 matrixdistribution [10℄; the matrix is divided in many more blo
ks than
omputers and assigned
y
li
ally asshown in Fig. 3 for four pro
essors P1; : : : ; P4, where a blo
k size (bs) has to be de�ned. Ea
h row blo
khas bs rows, i.e., bs � n elements. This matrix distribution among
omputers
an be de�ned in general
=

P
1

P
2

P
3

P
4

A

bs

P
1

P
2

P
3

P
4 bsFigure 3: Row Blo
k Cy
li
 Partitioning.as follows. If a matrix of order n is divided into row blo
ks of size bs, there will be nb = n=bs row blo
ksrb1; :::; rbnb to be assigned among the available
omputers. In general, pro
essor Pi will have blo
ks rbjsu
h that i = (j � 1) mod p + 1, 1 � j � nb, where p is the number of
omputers (P1; : : : ; Pp). Inthis
ontext, when fa
torizing a matrix blo
k of bs � n elements, three of the submatri
es of Fig. 2 arefound: L11, U11, and U12 as shown in Fig. 4. The three other submatri
es (L21, L22, and U22) are found

bs L
11

0 0 × U
11

 0
U

12=

bs

bs

n−bs bs n−bsbs n−bs

A
11

A
12Figure 4: LU on a Row Blo
k.following the same guidelines as in the
ase of the two-dimensional matrix distribution. Matrix L21 isfound by
omputing L21 = A21�U�111 , Eq. (7), using BLAS TRSM, and matri
es L22 and U22 are obtainedapplying the same pro
edure to the updated matrix A22 � L21 � U12. Fig. 5 shows the pseudo
ode ofthe pro
ess for
omputer Pi with whi
h the whole broad
ast-based parallel LU fa
torization algorithm
an be de�ned, where� p is the total number of
omputers used in parallel for the LU fa
torization, identi�ed from 0 top-1.� nb is the total number of blo
ks, whi
h depends on the blo
king size bs. Blo
ks are globallynumbered a
ross
omputers from 0 to nb, i.e.,
omputer Pi (0 � i � p-1) has blo
ks i mod p.� On the line Fa
torize blo
k j matri
es L and U are obtained from blo
k j with partial pivoting,whi
h is used for numeri
al stability. 3

if (i == 0)Fa
torize and send_broad
ast blo
k 0for (j = 0; j < nb; j++){ if (i == (j mod p)) /* Current blo
k is lo
al */Update lo
al blo
kselse if (i == ((j+1) mod p)) /* Next blo
k is lo
al */{ re
v_broad
ast_b (fa
torized blo
k j)Update and Fa
torize blo
k j+1send_broad
ast_b (fa
torized blo
k j+1)Update lo
al blo
ks (blo
k j+1 already updated)}else /* P_i does not hold blo
k j nor blo
k j+1 */{ re
v_broad
ast_b (fa
torized blo
k j)Update lo
al blo
ks (blo
k j+1 already updated)}}Figure 5: Parallel LU Matrix Fa
torization Algorithm with Overlapped Communi
ations.� The trailing matrix is, in fa
t, \the" A22 de�ned above, whi
h is updated via a matrix multipli-
ation.� send_broad
ast_b and re
v_broad
ast_b are the fun
tions to send and re
eive broad
ast mes-sages in ba
kground respe
tively.The algorithm de�ned in Fig. 5
ontains the idea of next blo
k to the
lassi
al algorithm. Given thatthe LU fa
torization and its
orresponding broad
ast message impose waiting (possible for a long time inEthernet-based
lusters) on p�1
omputers, the next blo
k is fa
torized and sent ahead (in ba
kground)allowing overlapped
ommuni
ation with lo
al
omputing. Basi
ally, the broad
ast operation is intendedto
omplete while every
omputer is updating the trailing matrix.2 Performan
e Analysis of the Parallel AlgorithmThe idealized
ase in whi
h
omputing and
ommuni
ation are overlapped and there is no overhead dueto broad
ast messages (ex
ept for the
ommuni
ation of the �rst blo
k) is shown in Fig. 6. Most of the
Bcast

0

Proc
0

Bcast
1

Proc
1

Bcast
2

Proc
nb−1

Bcast
nb

Time

Proc
nbFigure 6: Overlapped Computing and Communi
ation.lo
al
omputing time in ea
h
omputer (shown as Pro
i on Fig. 6) is mainly due to the trailing matrixupdate whi
h in
ludes a matrix multipli
ation. The following performan
e analysis is made taking intoa

ount:1. The distribution of the trailing matrix update.2. That Communi
ation is
arried out
on
urrently with
omputing (in ba
kground).From the point of view of the program running on ea
h
omputer, whose pseudo
ode is shown in Fig. 5,on ea
h iteration j,
omputers exe
ute one of the three alternatives de�ned in the pseudo
ode, as shownin Fig. 7. On iteration j, pro
essor holding the
urrent blo
k, Pj mod p, just updates the rest of the lo
alblo
ks of the trailing matrix, i.e. rbk with k > j. This is shown in Fig. 7 with the sequen
e4

P
j mod p

P
j+1 mod p

P
k

Time

Receiving Broadcast

Sending Broadcast

Receiving Broadcast

Piv(local≠j) L
21

(local≠j) A
22

(local≠j)

Piv(local≠j+1) L
21

(local≠j+1) A
22

(local≠j+1)

Piv(local) L
21

(local) A
22

(local)

Piv(j+1) A
22

(j+1) LU(j+1)L
21

(j+1)

t
j

k j mod p,

k j+1 mod p Figure 7: Computing on Ea
h Pro
essor.� Piv(lo
al 6= j): apply pivots on every lo
al blo
k ex
luding the
urrent blo
k,� L21(lo
al 6= j):
ompute L21 on every lo
al blo
k ex
luding the
urrent blo
k,� A22(lo
al 6= j):
ompute/update A22 on every lo
al blo
k ex
luding the
urrent blo
k,be
ause the
urrent blo
k has been updated/
omputed in the previous iteration. Also,
omputer Pj mod pre
eives in ba
kground the next
urrent blo
k whi
h will be ne
essary in the next iteration: rbj+1. Thepro
essor holding the next
urrent blo
k on iteration j, Pj+1mod p, has to update and LU fa
torize thenext
urrent blo
k. This is shown in Fig. 7 with the sequen
e:� Piv(j+1): apply pivots only to blo
k j + 1.� L21(j + 1):
ompute the submatrix of L21
orresponding to blo
k j + 1.� A22(j + 1): update the submatrix of A22
orresponding to blo
k j + 1.� LU (j + 1): LU fa
torize the blo
k j + 1.On
e the blo
k j + 1 is fa
torized it is sent in ba
kground to all the other
omputers (from time tj viaa broad
ast routine). The rest of the pro
essing in pro
essor Pj+1mod p is straightforward. Most of the
omputers, Pk with k 6= (j mod p) and k 6= (j + 1 mod p), have simple
omputing and
ommuni
ationtasks: update lo
al blo
ks and re
eive in ba
kground the next
urrent blo
k on
e the broad
ast sendingbegins in pro
essor Pj+1mod p.The detailed view of pro
essing given in Fig. 7 is a

urate but may lead to
onfussion on relativerequirements of ea
h individual task. Fig. 8 shows s
hemati
ally that most of the time needed for ea
hiteration is due to
ommuni
ation and A22 update. There are two issues related to relative times shownin Fig. 8:1. The reason/s for whi
h A22 update requirements are greater than those of applying pivots plus L21
omputing and also greater than updating and LU fa
torizing a whole blo
k.2. The relationship between the time required by a broad
ast
ommuni
ation and the time required byan A22 update, more spe
i�
ally, whi
h one of both tasks requires more time than the other. Thisrelationship between the relative times is ne
essary to be able to predi
t the time of an iteration.On
e ea
h iteration time
an be predi
ted, the time predi
tion for the whole algorithm is straightforward.5

P
j mod p

P
j+1 mod p

P
k

Time

Receiving Broadcast

Sending Broadcast

Receiving Broadcast

Piv, L
21

A
22

(local≠j)

A
22

(local≠j+1)

Piv, L
21

A
22

(local)

Piv...LU

t
j

k j mod p,

k j+1 mod p

Piv, L
21

Figure 8: Relative Times of Computing on Ea
h Pro
essor.2.1 Brief Performan
e Analysis of Computing SubtasksThe time required by subtasks of the algorithm should be detailed at least at the level of having a
omparison in orders of magnitude. More spe
i�
ally, the pro
essing requirements of ea
h task shownin Fig. 7 should be analyzed, i.e.: Piv(lo
al 6= j), L21(lo
al 6= j), A22(lo
al 6= j), Piv(j+1), L21(j + 1),A22(j + 1), LU (j + 1), Piv(lo
al), L21(lo
al), and A22(lo
al). Before analyzing every subtask in detail,basi
ally: Piv, L21, A22, and LU
omputing, it is useful to show in more detail how the algorithm of Fig.5 works on the original matrix to be fa
torized.Taking into a

ount the pseudo
ode of Fig. 5 and the matrix partition into row blo
ks shown in Fig. 3,a matrix of n � n elements is pro
essed at the beginning of the algorithm as shown in Fig. 9, where the�rst blo
k of bs � n elements is
ompletely
ontained in pro
essor P0. Before the �rst iteration the �rst
L

11

A
22

L
21

U
11 U

12

n−bsbs

n−bs

bs

n

Figure 9: Pro
essing Before the First Iteration.blo
k of bs� n elements is pro
essed as a matrix and LU fa
tization is
omputed, obtaining submatri
esL11, U11, and U12, and the asso
iated fa
torization pivots. Given that the matrix is partitioned into rowblo
ks, the �rst pro
essor P0
omputes lo
ally (without needing extra data/
ommuni
ation) submatri
esL11, U11, and U12, and asso
iated pivots. From the point of view of libraries su
h as LAPACK [2℄ orATLAS (Automati
ally Tuned Linear Algebra Software) [16℄ this is done via a single
all to GETRF. Onthe �rst iteration, i.e. i = 1, with i = j + 1, where j is the pseudo-
ode iteration index, several taskshave to be done:� Computing matrix L21.� Updating matrix A22.� Computing and sending broad
ast the LU fa
torization on the next
urrent blo
k.6

On this �rst iteration, the matrix is pro
essed as shown in Fig. 10, where
L

11
U

12
bs

n

A
22

L
21

n−bsbs

n−bs

bs

U
11

Figure 10: Pro
essing on the First Iteration.� The shaded submatrix of bs� n elements is to be
omputed at pro
essor P1.� The dark submatrix of bs�n�bs elements is the next
urrent blo
k to be sent in ba
kground while
omputing/updating matri
es L21 and A22 in all
omputers, in
luding P1.More spe
i�
ally, let tL1 the submatrix of L21 to be
omputed on the �rst iteration, tU1 the matrix U12to be
omputed before the �rst iteration, and tA1 the submatrix of A22 to be
omputed on the �rstiteration, tL1 2 IR(n�bs)�bstU1 2 IRbs�(n�bs)tA1 2 IR(n�bs)�(n�bs)And
omputing on the �rst iteration involves� Applying pivots to the whole trailing matrix, in
luding tL1 and tA1� Computing tL1 = A21 � U�111 = tL1 � U�111 .� Computing tA1 = A22 � tL1 � tU1 = tA1 � tL1 � tU1.However, the next
urrent blo
k (in the �rst bs rows of tA1) is pro
essed in a di�erent way, in order to beLU fa
torized and available on every
omputer in the next iteration of the algorithm. The dark submatrixof tA1 is updated and LU fa
torized in P1 before updating the rest of tA1 assigned to pro
essor P1.In general, in the i th iteration, the pro
essing
an be s
hemati
ally des
ribed as shown in Fig. 11.And de�ning tLi, tUi, and tAi as matri
es tL1, tU1, and tA1 but on i th iteration, i.e. tLi the submatrix
L

11
U

12
bs

A
22

L
21

n−i*bsbs

n−i*bs

bs

U
11

Figure 11: Pro
essing on the i th Iteration.7

of L21 to be
omputed on the i th iteration, tUi the matrix U12
omputed before the i th iteration, andtAi the submatrix of A22 to be
omputed on the i th iteration,tLi 2 IR(n�i�bs)�bstUi 2 IRbs�(n�i�bs)tAi 2 IR(n�i�bs)�(n�i�bs)And
omputing on the i th iteration involves� Applying pivots to the whole trailing matrix, in
luding tLi and tAi� Computing tLi = A21 � U�111 = tLi � U�111 .� Computing tAi = A22 � tLi � tUi = tAi � tLi � tUi.And the next
urrent blo
k (in the �rst bs rows of tAi) is pro
essed in a di�erent way, in order to be LUfa
torized and available on every
omputer in the next iteration of the algorithm.2.1.1 Applying Pivots on the i th IterationThere are several alternatives in order to apply pivots and maintain data
onsisten
y as well as numeri
alstability. The minimum task to be done is trailing matrix update/pivoting with the pivots of the
urrentLU fa
torized blo
k. This implies updating tLi and tAi. However, it is worth noting that:� pivoting do not imply any
oating point operation, just data movement.� there are at most bs
olumn inter
hanges, sin
e pivots are produ
ed/ne
essary on LU fa
torizationof a matrix with bs� (n� i � bs) elements on i th iteration.and these are the reasons for whi
h pivoting is not taken into a

ount from the point of view of
omputingtime analysis.2.1.2 Computing tLiComputing tLi implies tLi = A21 � U�111 = tLi � U�111with tLi 2 IR(n�i�bs)�bsU11 2 IRbs�bsThus, a triangular system with (n� i�bs) equations and bs unknowns is solved bs times to obtain/updatematrix tLi. In terms of the BLAS library [7℄ [11℄, tLi is obtained by using dire
tly the fun
tion tosolve triangular systems of equations with multiple right hand sides, TRSM. Roughly speaking, solving atriangular system of equations with the
oeÆ
ient matrix of bs � bs elements implies O(bs2) operations,and given that the triangular system of equations is solved with n� i � bs right hand sides, the numberof
oating point operations is O((n � i � bs) � bs2). Thus, in general,
omputing tLi requires O(n)operations, and taking into a

ount that bs is relatively small
ompared to n the hidden
onstant/s inthe O() notation
annot be very large. Sumarizing,ReqF lops(tLi) = O(n) (9)where ReqF lops(tLi) is the number of
oating point operations required to
ompute tLi and, in fa
t, isa measure of the
omputing time needed for tLi.2.1.3 Computing LU on the i th Iteration: LUiThe LU fa
torization method on the i th iteration is applied to a submatrix of bs� (n� i � bs) elements.Following the des
ription made in [13℄ to
al
ulate the number of
ops for LU fa
torization, the number8

of
oating points required for the fa
torization of a bs � (n� i � bs) elements matrix is given byReqF lops(LUi) = bsXi=1 2� (bs� i)� (n� i)= bsXi=1 2(bs � n � bs � i� i � n+ i2)= bsXi=1 2 � bs � n� 2 � (bs + n) � i+ 2 � i2whi
h is O(n) but with more terms than ReqF lops(LUi), and some of them being bs2 and bs3. However,it is still remarkable that ReqF lops(LUi) = O(n) (10)Furthermore, analyzing the evolution of
omputing as i in
reases (more iterations are made), the numberof
ops de
reases, so the number of
ops is very small in the last iterations taking into a

ount the (bs�i)and (n� i) fa
tors in the equations above.2.1.4 Updating tAiTaking into a

ount Fig. 8, this is the task with the greatest
oating point requirements on ea
h iteration.Furthermore, the whole blo
king method has been designed to have most of the operations in a matrixmultipli
ation and this is made in the updating of tAi. in order to update the trailing matrix, a matrixmultipli
ation should be done. More spe
i�
ally, the operation to be
arried out istAi = tAi � tLi � tUiwhere tAi 2 IR(n�i�bs)�(n�i�bs)tLi 2 IR(n�i�bs)�bstUi 2 IRbs�(n�i�bs)Ea
h element of the matrix multipli
ation tLi�tUi requires 2�bs�1 operations, and the resulting matrixis of (n � i � bs)� (n� i � bs) elements, thusReqF lops(tAi) = (2 � bs� 1) � (n� i � bs) � (n� i � bs) + (n� i � bs) � (n� i � bs) (11)Summarizing, ReqF lops(tAi) = O(n2) (12)2.1.5 Comparison of Subtasks RequirementsSummarizing, applying pivots requires a negligible running time, and from the previous subse
tions:ReqF lops(tLi) = O(n)ReqF lops(LUi) = O(n)ReqF lops(tAi) = O(n2)and these equations justify a quite more formally the running times shown in Fig. 8. It is worth notingthat even though not every blo
k of tAi is updated at the same time or
on
urrently, the requirednumber of
ops is O(n2) be
ause there is just one blo
k updated and LU fa
torized ahead the rest: thenext
urrent blo
k. 9

2.2 Brief Performan
e Analysis of Broad
astUnfortunately, modeling the time required for a broad
ast operation is not as simple as using the well-known model for a point-to-point
ommuni
ation:t(m) = �ptp + �ptp �m (13)where m is the amount of data to transfer, � is the
ommuni
ation laten
y or startup
ost, and 1=�ptpis the network
ommuni
ation bandwidth. Timing models for broad
ast
ommuni
ation usually dependon the implementation sele
ted for the broad
ast routine in a spe
i�
 implementation. Many imple-mentations
onstru
t spanning trees and this implies logarithmi

oeÆ
ients on the timing models. Inthe spe
i�

ase of the resear
h being made for parallel
omputing in
lusters, the broad
ast messageimplementation is su
h that:� Data is physi
ally broad
asted using UDP, and there is not retransmission unless some data havebeen lost.� A
knowledgements are re
eived at the broad
ast root from all the re
eivers to provide a reliablebroad
ast message to the parallel appli
ation.These details are hidden to the user (pertain to the broad
ast implementation). Physi
al broad
ast plusthe low rate at whi
h data are lost in a lo
al area network produ
e a very good s
alability. However,laten
y
annot be modeled as in a point-to-point message, sin
e the time required for broad
ast a
knowl-edgement/s and other tasks related to syn
hronization are found to be proportional to the number of
omputers involved in the
ommuni
ation. Given that data is sent as in a point-to-point operation andthere is a very low rate of message loss, the time required for data transmission through the network
anbe modeled as in the point-to-point messages, i.e. (�b
ast �m) in Eq. (13), with �b
ast �= �ptp be
ause thedata bandwidth of the broad
ast routine is not ne
essarily the same as that of point-to-point messages,and m = bs � (n� i � bs) in the i th iteration. More spe
i�
ally, one blo
k has to be broad
asted on ea
hiteration, whose size is m = bs � (n � i � bs). However, a
kowledgements sent from re
eivers to the rootattempt against s
alability, be
ause these messages
annot be re
eived simultaneously at the broad
astroot. Even when there are multiple ways of avoiding su
h performan
e drawba
k, it is still possible toanalyze the time required by broad
ast messages (and the parallel program using this broad
ast version)from the point of view of the time required for
ommuni
ation. Summarizing, the timing model for thebroad
ast operation in the i th iteration ist(b
ast(i; p)) = �b + lpp � (p� 1) + �b
ast � bs � (n � i � bs) (14)where �b is the laten
y of the broad
ast implementation independently of the number of
omputersinvolved, lpp is the laten
y per pro
essor of the broad
ast implementation, p�1 is the number of re
eiversin a broad
ast operation, and Eq. (14) is the timing model of the broad
ast implementation used in the
urrent version of the parallel LU fa
torization algorithm.2.3 Computing and Communi
ation Time RequirementsTaking into a

ount the pseudo
ode in Fig. 5 and the algorithm behavior des
ribed in Fig. 8,
omputingtAi and broad
ast
ommuni
ation of the next
urrent blo
k in ea
h iteration should be
ompared. Thebroad
ast
ommuni
ation time in the i th iteration is given in Eq. (14), but the
omputing time in ea
hiteration has been only partially given above.The number of
oating point operations for updating the trailing matrix is given in Eq. (11). Twoimportant fa
tors should be taken into a

ount for modeling the
omputing time:� The pro
essing workload is evenly distributed amongst p
omputers, and ea
h one of them has to
arry out 1=p of the total workload. Thus,
omputing is made simultaneously in p
omputers andthe required time is redu
ed by a fa
tor of p.� The time required for a single
oating point operation, whi
h has to be used to translate frompro
essing workload in terms of number of
oating point operations to
omputing time.Rewriting Eq. (11)ReqF lops(tAi) = (2 � bs� 1) � (n� i � bs) � (n� i � bs) + (n� i � bs) � (n� i � bs)= (2 � bs� 1) � (n� i � bs)2 + (n� i � bs)2= (n � i � bs)2 � ((2 � bs � 1) + 1)= 2 � bs � (n� i � bs)2 (15)10

Taking into a

ount that the pro
essing workload is evenly distributed amongst p
omputers, the expe
tedtime required for
oating point operations on ea
h
omputer in iteration i is modeled byet(tAi; p) = tf �ReqF lops(tAi)p= tf � 2 � bs � (n� i � bs)2p (16)where tf is the time required for a single
oating point operation.Taking into a

ount Eq. (15), Eq. (14), and Fig. 8, the time required to
omplete the parallelalgorithm on p pro
essors is given byet(parLU; p) = n=bsXi=1 max(et(tAi; p); t(b
ast(i; p))) (17)It is expe
ted that the numeri
al
omputing time in the �rst iterations is greater than the time requiredby broad
ast
ommuni
ations. Also, given that� the trailing matrix is made smaller as more iterations are
ompleted, and� broad
ast message laten
y is
onstant from the point of view of trailing matrix size,there is some iteration value k, for whi
h
omputing time is lower than
ommuni
ation time, i.e.,et(tAi; p) � t(b
ast(i; p)); i � ket(tAi; p) < t(b
ast(i; p)); i > kand Eq. (17) be
omes et(parLU; p) = kXi=1 et(tAi; p) + n=bsXi=k+1 t(b
ast(i; p)) (18)The spe
i�
 value of k is dependent on many fa
tors, and the analysis would be highly simpli�ed if it wereknown a priori. More spe
i�
ally, the analysis
an be made by �nding out the value at whi
h
omputingtime is equal to
ommuni
ation time, i.e.tf � 2 � bs � (n� i � bs)2p = �b + lpp � (p� 1) + �b
ast � bs � (n� i � bs) (19)For a �xed value of p �b + lpp � (p� 1) is
onstant, and given that (n � i � bs)
hanges with i:�p = �b + lpp � (p � 1) (20)is = n� i � bs (21)Thus, Eq. (19)
an be rewritten as((tf � 2 � bs)=p) � is2 = �p + �b
ast � bs � is (22)whi
h
an be rewritten as the quadrati
 equation((tf � 2 � bs)=p) � is2 � �b
ast � bs � is � �p = 0((tf � 2 � bs)=p)| {z }a �is2 +��b
ast � bs| {z }b �is +��p|{z}
 = 0i.e. a � is2 + b � is +
 = 0 (23)with a = (tf � 2 � bs)=p (24)b = ��b
ast � bs (25)
 = ��p (26)11

and the values of is whi
h satisfy Eq. (23) are given by the quadrati
 formulais = �b�pb2 � 4 � a �
2 � a (27)A quite deeper analysis is now needed to �nd out at least if it
an be assured that the square root isapplied to a number greater than 0. Taking into a
ount Eq. (24) and Eq. (25), the term�4 � a �
 = �4 � ((tf � 2 � bs)=p) � (��p) = 4 � �p � (tf � 2 � bs)=p > 0 (28)and, thus, b2 � 4 � a �
 > 0and there will be two values 2 IR from the results of the square root to su
h expression. Now, it isne
essary to know whi
h value of is will be used, given that Eq. (27) provides two. De�ningis+ = �b+ ��pb2 � 4 � a �
��2 � a (29)and is� = �b� ��pb2 � 4 � a �
��2 � a (30)it is ne
essary to know whether is+ or is� will be used. Taking into a
ount Eq. (28),���pb2 � 4 � a �
��� > ���pb2��� (31)thus, + ���pb2 � 4 � a �
��� > jbj (32)and, given that b < 0, + ���pb2 � 4 � a �
��� > �b (33)and this implies �b� ���pb2 � 4 � a �
��� < 0 =) is� < 0 (34)In fa
t, this value of is� should be used to �nd out the value of k, and using Eq. (21),k� = n� is�bs (35)but, given that is� < 0, k� = n� is�bs = nbs + �is�bs > nbs (36)and this value of k is not useful, sin
e k should be su
h that 1 � k � n=bs a
ording to Eq. (18). On theother hand, �b + ���pb2 � 4 � a �
��� > 0 =) is+ > 0 (37)and k+ = n� is+bs = nbs � is+bs < nbs (38)and this value, k+, has to be used for k in Eq. (18) or, in fa
t, the integer number immediately greaterthan k+ as de�ned in Eq. (38).Summarizing, the expe
ted time for the broad
ast-based parallel LU fa
torization algorithm with thebroad
ast implemented su
h as des
ribed in subse
tion 2.2 for a �xed number of
omputers iset(parLU; p) = kXi=1 et(tAi; p) + n=bsXi=k+1 t(b
ast(i; p))et(parLU; p) = kXi=1 tf � 2 � bs � (n� i � bs)2p + n=bsXi=k+1�p + � � bs � (n � i � bs) (39)12

with k = n� is+bs = n� �b+jpb2�4�a�
j2�abs (40)a = tf � 2 � bsp (41)b = ��b
ast � bs (42)
 = ��p (43)where� bs is the blo
k size used for the parallel algorithm.� tf is the time required for a single
oating point operation.� 1=�b
ast is the network
ommuni
ation bandwidth a
hieved with the broad
ast
ommuni
ationroutine.� �p is the
ommuni
ation laten
y or startup
ost of the broad
ast
ommuni
ation routine with p
omputers.� p is the �xed number of
omputers.3 Comparison with S
aLAPACK: Performan
e AnalysisThe expe
ted time for the S
alapa
k LU fa
torization algorithm is well known [4℄ [5℄ [3℄:et(S
aLU; p) = 2 � n33 � p tf + (3 + log2(p)=4) � n2pp �ptp + (6 + log2(p)) � n � �ptp (44)where �ptp and �ptp are the message laten
y and the inverse of the bandwidth for point-to-point messagesrespe
tively, and the rest of parameters/
oeÆ
ients have already been explained and used. Some di�erentpoints of view prevent a dire
t
omparison between Eq. (39) and Eq. (44) above. The �rst di�erentapproa
h in modeling the required time is on the number of
oating point operations. The �rst term ofEq. (44) re
e
ts the number of
oating point operations in S
aLAPACK's timing model: 2=3�n3. This isthe traditional number of operations for the sequential LU fa
torization as given in the literature [9℄. Thetiming model given for the proposed parallel algorithm takes into a

ount that most of the
omputingtime is needed for the trailing matrix update whose number of operations is given in Eq. (15) for the i thiteration. However, both algorithms are dire
tly based on the blo
ked LU fa
torization, so the numberof
oating point operations should be the same and a deeper
omparison analysis is not ne
essary todetermine whi
h one -Eq. (39) or Eq. (44)- is more a

urate.The S
aLAPACK timing model for
ommuni
ation is re
e
ted in the se
ond and third terms ofEq. (44). The �rst strong di�eren
e with the approa
h proposed in this report is that S
aLAPACK's
ommuni
ation
osts are taken into a

ount for every blo
k/element of the matrix. On the other hand,for the approa
h proposed in this paper, Eq. (17) and Eq. (18) dire
tly re
e
t that a broad
ast
ommu-ni
ation adds time to the total expe
ted algorithm time only when it is greater than the
orrespondingtrailing matrix update time. Even if the numeri
al
omputing time is greater than the broad
ast timein only a few iterations -e.g. k = 20 or k = 30 in Eq. (18), the
ommuni
ation time (in those iterations)would not add time to the total pro
essing time, sin
e it is overlapped with numeri
al
omputing. How-ever, the broad
ast timing model of Eq. (14) is far from optimal and implies at least that the laten
ygrows linearly with the number of pro
essors. On the other hand, S
aLAPACK relies on spanning treesand, thus, the timing model implies a logarithmi
al growth depending on the number of pro
essors.The next subse
tion will show a small example of the expe
ted time for ea
h algorithm on a
urrent
luster. The spe
i�
 values of parameters needed for modeling the performan
e of ea
h algorithm aregiven, along with their similarities/di�eren
es.3.1 Expe
ted Times: Spe
i�
 ExampleHaving a real
luster, it is possible to
al
ulate the expe
ted time of ea
h parallel algorithm using Eq. (44)and Eq. (39) for the S
aLAPACK and the broad
ast-based LU fa
torization algorihtms respe
tively. The13

Table 1: Cluster Chara
teristi
s.Clo
k Mem M
op/s (DGETRF)2.4 GHz 1 GB �= 2500spe
i�

luster is
omposed of 20 identi
al
omputers, whose
hara
teristi
s are summarized in Table 1and the inter
onne
tion network is 100 Mb/s Ethernet with
omplete swit
hing. The spe
i�
 values forthe parameters required by the S
aLAPACK time model are given in Table 2, where �ptp and �ptp wereTable 2: S
aLAPACK's Parameter Values.Parameter Valuep 20tf (2500 � 106)�1 se
.�ptp (11:6=8 � 106)�1 se
.�ptp 200 � 10�6 se
.measured with the MPICH implementation of MPI, using the ping-pong program distributed along withthe implementation. Given the memory available on ea
h
omputer and the number of
omputers, thematrix size was set to n = 45000. The expe
ted running time of the S
aLAPACK's LU on the
lusterwith 20
omputers just des
ribed is
omputed using Eq. (44):et(S
aLU; 20) �= 2582 se
: (45)Taking into a

ount that� 20
omputers of approximately 2.5 G
op/s have a
omputing power of aproximately 50 G
op/s,� the total number of
oating point operations required for a LU fa
torization of a matrix of 45000�45000 elements is 2/3 * 450003,the theoreti
al (minimum) time for 20
omputers is given bytt(LU; 20) = 1215 se
: (46)And this implies that the expe
ted (parallel) eÆ
ien
y of the S
aLAPACK parallel LU fa
torizationalgorithm is ee(S
aLU; 20) = tt(LU; 20)et(S
aLU; 20) �= 12152582 �= 0:47 (47)Thus, it is expe
ted that the S
aLAPACK parallel LU matrix fa
torization algorithmwill make use of lessthan 50% of the available
omputing power of this spe
i�

luster. LU matrix fa
torization is spe
iallypenalized in S
aLAPACK's two dimensional matrix distribution due to the partial pivoting needed fornumeri
al stability. Partial pivoting implies a
olle
tive
ommuni
ation in a row or a
olumn of pro
essors(for pivot sele
tion) whi
h implies a group
ommuni
ation penalization in an algorithm de�ned mainlyfor point-to-point
ommuni
ations. Given that the proposed parallel LU matrix fa
torization distributesdata by
olumn blo
k or row blo
k, this penalization is not found.On the other hand, the spe
i�
 values for the parameters required by the time model of the parallelLU matrix fa
torization proposed in this report are given in Table 3. The values of p and tf are exa
tlythe same as those given in Table 2, for the S
aLAPACK analysis. The data bandwidth obtained by thebroad
ast routine implemented on top of UDP, 1=�b
ast is similar to that obtained by MPICH point-to-point messages. More spe
i�
ally, the data bandwidth of the implemented broad
ast routine is about13.8% worse than that obtained by MPICH point-to-point messages. The
ommuni
ation laten
y of theimplemented broad
ast routine for 20
omputers, �p, is mu
h worse than that of the MPICH point-to-point messages. One of the reasons has been explained above: a
knowledgements are sent from everyre
eiver (19 in this spe
i�

ase) to the sender. More spe
i�
ally, the value of �p is about three ordersof magnitude worse than �ptp. The parameter bs in Table 3 is relatively new be
ause there is not asimilar parameter for the S
aLAPACK analysis. However, S
aLAPACK routines do need su
h a value14

Table 3: Broad
ast-Based Parameter Values.Parameter Valuep 20tf (2500 � 106)�1 se
.�b
ast (10=8 � 106)�1 se
.�p 0.1 se
.bs 64for running on a given parallel platform (and, also, that of the pro
essors grid
on�guration). There arenot many possible values for bs, being 32, 64, and 128 the most used in the S
aLAPACK referen
es. Thesame values (32, 64 and 128)
ould be used for the broad
ast-based parallel LU fa
torization analysis,64 was �nally used in the experiments. The matrix size was set as for the S
aLAPACK analysis, i.e.n = 45000. The expe
ted running time of the proposed parallel LU fa
torization routine on the
lusterwith 20
omputers just des
ribed is
omputed using Eq. (39). The �rst value to be obtained is thespe
i�
 iteration in whi
h
ommuni
ation time is greater than
omputing time, k in Eq. (40):k = 363 (48)and this means that the
ommuni
ation time of the �rst 363 iterations is expe
ted to be hidden by thethe
omputing time. Also, it is worth noting that the rest of the iterationsnbs � k = 4500064 � 363 �= 703� 363 = 340
omputing is hidden by
ommuni
ation time, i.e.
omputing time is not added to
ommuni
ation time,sin
e
ommuni
ations are
arried out
on
urrently. Now, it is possible to obtain the expe
ted time forthe parallel LU fa
torization using Eq. (39):et(parLU; 20) �= 1298 se
: (49)whi
h is very near the maximum theoreti
al time, tt(LU; 20) = 1215 se
onds. The expe
ted eÆ
ien
y ofthe broad
ast-based parallel LU fa
torization isee(parLU; 20) = tt(LU; 20)et(parLU; 20) �= 12151298 �= 0:94 (50)Thus, it is expe
ted that the proposed parallel LU matrix fa
torization algorithm will use about 94% ofthe available
omputing power of this spe
i�

luster.From the point of view of the analysis, the proposed parallel algorithm is far better than the S
aLA-PACK algorithm for parallel LU fa
torization at least on this spe
i�

luster. The S
aLAPACK algorithmis expe
ted to use 47% of the available
omputing power while the proposed parallel algorithm is expe
tedto use about 94% of the available
omputing power. The experimentation should make
lear the a

ura
yof the time models as well as the real performan
e di�eren
e between both algorithms at least on thespe
i�

luster des
ribed in this se
tion.4 Comparison with S
aLAPACK: ExperimentationSome simple experimentation will
larify the
omparison on a real environment. Computers (PCs) usedfor experimentation have the
hara
teristi
s summarized above in Table 1, whi
h is
opied hereClo
k Mem M
op/s (DGETRF)2.4 GHz 1 GB �= 2500and the inter
onne
tion network is 100 Mb/s Ethernet with
omplete swit
hing. Performan
e in the tableabove is given in M
op/s and DGETRF, the sequential LU matrix fa
torization with double pre
ision
oating point number representation, was used to measure sequential performan
e.The total number of available
omputers is 20, and experiments were made with 2, 4, 8, 16, and20
omputers. Matrix sizes are s
aled up a

ording to the number of
omputers and memory available.15

Lo
al/sequential
omputing is made by using fully optimized ATLAS BLAS (Automati
allyTuned LinearAlgebra Software BLAS) [16℄. S
aLAPACK
ommuni
ation is made as usual: BLACS (Basi
 LinearAlgebra Communi
ation Subroutines) implemented on top of MPICH implementation of MPI. Everypossible bidimensional pro
essors grid P � Q was
onsidered for S
aLAPACK routines, e.g. for 16pro
essors, the experimental grids were: 1�16, 16�1, 2�8, 8�2, and 4�4. Also, square blo
k sizes wereused for S
aLAPACK routines: 16, 32, 64, 100 and 128. The proposed algorithm does not need to de�nea bidimensional pro
essors grid, and the blo
k values used for experimentation are the same as those usedfor S
aLAPACK routines. Given the one-dimensional matrix partitioning and distribution des
ribed forthe algorithm, the matrix is divided in row blo
ks instead of square blo
ks.Figure 12 shows the parallel perfoman
e measured as eÆ
ien
y for LU matrix fa
torization on di�erentnumber of
omputers from 2 to 20. The matrix order (size) for ea
h number of
omputers is shownbetween parenthesis on the x axis. Bars show the best eÆ
ien
y value obtained by the algorithms for ea
hnumber of
omputers. Light gray bars labeled as \S
a"
orrespond to values obtained by S
aLAPACK'sPDGETRF. Dark gray bars labeled as \Prop"
orrespond to values obtained by the proposed parallel LUmatrix fa
torization algorithm. It is worth to mention the similarity among the S
aLAPACK's results
2 (14000) 4 (20000) 8 (29000) 16 (41000) 20 (45000)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Sca Prop

Number of Computers (Matrix Order)

E
ff

ic
ie

nc
y

Figure 12: LU Matrix Fa
torization EÆ
ien
y.shown in Fig. 12 with those in [5℄, where S
aLAPACK is used for LU matrix de
omposition and linearequation system solving. In Fig. 12 as well as in [5℄ the eÆ
ien
y is about 0.5 (or 50% of the totalavailable
omputing power).Experiments made using di�erent numbers of
omputers -2, 4, 8, 16 and 20- make it possible toevaluate the performan
e from the point of view of s
alability. This s
alability analysis
an be madewith the timing models given in the previous subse
tion. The proposed algorithm performan
e is betterthan that implemented in S
aLAPACK from the point of view of \raw" eÆ
ien
y and performan
edegradation from 2 to 20
omputers. The proposed parallel LU matrix fa
torization algorithm eÆ
ien
yfor 20
omputers is about 7% worse than the eÆ
ien
y for 2
omputers, while SaLAPACK eÆ
ien
yfor 20
omputers is about 23% worse than the eÆ
ien
y for 2
omputers. At least for this
luster, thes
alability of the proposed algorithm is better than that of the S
aLAPACK algorithm.5 Con
lusions and Further WorkThe timing model of the broad
ast-based parallel LU matrix fa
torization has been introdu
ed in thisreport. This timing model
an be used for performan
e predi
tion as well as for performan
e
omparisonwith other approa
hes for parallel LU matrix fa
torization.From the analyti
al point of view, the parallel LU matrix fa
torization algorithm is expe
ted to obtainvery good performan
e (speedup and eÆ
ien
y) values. More spe
i�
ally, using the time model given forthe algorithm the expe
ted eÆ
ien
y on a
luster with 20
omputers is about 0.94, i.e. it is expe
ted touse about 94% of the available
omputing performan
e on a spe
i�

luster with 20
omputers. Usingthe timing model of the S
aLAPACK parallel LU matrix algorithm for the same
luster, the expe
tedeÆ
ien
y is about 0.47, i.e., the S
aLAPACK parallel LU matrix fa
torization algorithm expe
ts to useless than 50% of the available parallel performan
e.Experiments have shown that the broad
at-based parallel LU matrix fa
torization algorithm obtainsbetter performan
e values than the S
aLAPACK approa
h on a spe
i�

luster. Also, experiments have16

shown that timing models for both parallel algorithms are very a

urate at least for the total number of
omputers available for experimentation. Table 4 shows the summary of the timing models as well as theexperimentation for 20
omputers. Values in the
olumn Expe
ted E�. are obtained using the timingTable 4: Summary of Values for 20 Computers.Algorithm Expe
ted E�. Experim. E�. A

ura
y % Better (Experim.)S
aLAPACK 0.47 0.44 +6.8% -Broad
ast-Based 0.94 0.86 +9.3% 95.45%models for the algorihtms and values in the
olumn Experim. E�. are those obtained in the experimenton the
urrent
luster with 20
omputers. Timing models a

ura
y is shown in the
olumn A

ura
yof Table 4 and the last
olumn show that the broad
ast-based algorithm obtains more than 95% betterperforman
e than the S
aLAPACK algorithm on this spe
i�

luster.Table 5 shows the summary of the experimentation in the
luster. Values in the
olumns S
aLAPACKE�. and Broad
ast-Based E�. were obtained in the experimentation on the
lusters with di�erentnumbers of
omputers. Values in the
olumn % Better (Broad
ast-Based) show that the broad
ast-Table 5: Experimentation Summary.Number of Computers S
aLAPACK E�. Broad
ast-Based E�. % Better (Broad
ast-Based)2 0.57 0.92 61.2%4 0.59 0.92 56.49%8 0.48 0.93 92.01%16 0.45 0.9 99.36%20 0.44 0.86 95.35%based LU fa
torization algorithm obtains mu
h better performan
e than the S
aLAPACK LU matrixfa
torization algorithm. Furthermore, as the number of
omputers is greater, the di�eren
e in performan
ebetween both algorithms is better for the broad
ast-based one, thus showing that the broad
ast-basedalgorithm has better s
alability than the S
aLAPACK algorithm.

17

Referen
es[1℄ Anderson E., Z. Bai, C. Bis
hof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,A. M
Kenney, D. Sorensen, \LAPACK: A Portable Linear Algebra Library for High-Performan
eComputers", Pro
eedings of Super
omputing '90, pages 1-10, IEEE Press, 1990.[2℄ Anderson E., Z. Bai, C. Bis
hof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammar-ling, A. M
Kenney, S. Ostrou
hov, D. Sorensen, LAPACK Users' Guide (Se
ond Edition), SIAMPhiladelphia, 1995.[3℄ Bla
kford L., J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammar-ling, G. Henry, A. Petitet, K. Stanley, D. Walker, R. Whaley, S
aLAPACK Users' Guide, SIAM,Philadelphia, 1997.[4℄ Chen Z., J. Dongarra, P. Lusz
zek, K. Ro
he, \Self adapting software for numeri
al linear algebraand LAPACK for
lusters", Parallel Computing 29, pp. 1723-1743, Elsevier B.V., 2003.[5℄ Chen Z., J. Dongarra, P. Lusz
zek, K. Ro
he, \The LAPACK for Clusters Proje
t: an Exampleof Self Adapting Numeri
al Software", Pro
eedings of the 37th Hawaii International Conferen
e onSystem S
ien
es, pp. 1-10, 0-7695-2056-1/04, IEEE, 2004.[6℄ Choi J., J. Dongarra, L. Ostrou
hov, A. Petitet, D.Walker, R.Whaley, \The Design and Implementa-tion of the S
aLAPACK LU, QR, and Cholesky Fa
torization Routines", Report ORNL/TM-12470,Sep. 1994. Also available as a \lawn".[7℄ Dongarra J., J. Du Croz, S. Hammarling, R. Hanson, \An extended Set of Fortran Basi
 LinearSubroutines", ACM Trans. Math. Soft., 14 (1), pp. 1-17, 1988.[8℄ Dongarra J., D. Walker, \Libraries for Linear Algebra", in Sabot G. W. (Ed.), High Performan
eComputing: Problem Solving with Parallel and Ve
tor Ar
hite
tures, Addison-Wesley PublishingCompany, In
., pp. 93-134, 1995.[9℄ Golub G., C. Van Loan, Matrix Computations, 2nd Edition, The John Hopkins University Press,1989.[10℄ Kumar V., A. Grama, A. Gupta, G. Karypis, Introdu
tion to Parallel Computing. Design andAnalysis of Algorithms, The Benjamin/Cummings Publishing Company, In
., 1994.[11℄ Lawson C., R. Hanson, D. Kin
aid, F. Krogh, \Basi
 Linear Algebra Subprograms for FortranUsage", ACM Transa
tions on Mathemati
al Software 5, pp. 308-323, 1979.[12℄ Tinetti F. G., \C�omputo Paralelo en Redes de Esta
iones de Trabajo para Apli
a
iones Basadas enAlgebra Lineal", Fernando G. Tinetti, Reporte T�e
ni
o PP004 - 01, Centro de T�e
ni
as Anal�ogi
o-Digitales (CeTAD), Fa
. de Ingenier��a, Laboratorio de Investiga
i�on y Desarrollo en Inform�ati
a(LIDI), Fa
ultad de Inform�ati
a, Laboratorio de Qu��mi
a Te�ori
a (LQT), CEQUINOR, Departa-mento de Qu��mi
a, Fa
ultad de Cien
ias Exa
tas, Universidad Na
ional de La Plata, Julio de 2001.[13℄ Tinetti F. G., \LU Fa
torization: Number of Floating Point Operations and Parallel Pro
essing inClusters", Laboratorio de Investiga
i�on y Desarrollo en Inform�ati
a (LIDI), Fa
ultad de Inform�ati
a,Universidad Na
ional de La Plata, Mayo de 2003, Reporte T�e
ni
o PLA-001-2003.[14℄ Tinetti F. G., \Guidelines for Parallel Linear Algebra on Ethernet-Based Clusters: Matrix Multi-pli
ation and LU Fa
torization Results", Laboratorio de Investiga
i�on y Desarrollo en Inform�ati
a(LIDI), Fa
ultad de Inform�ati
a, Universidad Na
ional de La Plata, Junio de 2003, Reporte T�e
ni
oPLA-002-2003.[15℄ Tinetti F. G., E.Luque, \Parallel Matrix Multipli
ation on Heterogeneous Networks of Worksta-tions", Pro
eedings VIII Congreso Argentino de Cien
ias de la Computa
i�on (CACIC), Fa
. deCien
ias Exa
tas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina, p. 122, O
t.2002. Available at http://lidi.info.unlp.edu.ar/ fernando/publis/pmm.pdf[16℄ Whaley R. C., A. Petitet, J. J. Dongarra, Automated Empiri
al Optimization of Software and theATLAS Proje
t. Available at http://www.netlib.org/lapa
k/ lawns/lawn147.ps18

