
LU Fatorization: Analysis of the Broadast-Based ParallelAlgorithm for ClustersFernando G. Tinetti�Investigador Asistente CICPBA, III-LIDIFaultad de Inform�atia, UNLP50 y 115, 1900, La PlataArgentinaTehnial Report PLA-001-2005yMarh 2005AbstratThis report is spei�ally foused on the analysis of the broadast-based parallel LU matrix fa-torization in order to have a predition performane measure for the algorithm. Also, this preditionperformane measure an be used for omparison with other parallel algorithms proposed for thesame task -LU matrix fatorization. Some experiments are presented to verify the auray of theperformane predition as well as to ompare with the SaLAPACK performane of the parallel LUmatrix fatorization. This report should be understood in the ontext of two previous tehnial re-ports: \LU Fatorization: Number of Floating Point Operations and Parallel Proessing in Clusters"and \Guidelines for Parallel Linear Algebra on Ethernet-Based Clusters: Matrix Multipliation andLU Fatorization Results".

�fernando�info.unlp.edu.aryPLA stands for Parallel Linear Algebra 1

1 IntrodutionThe LU fatorization algorithm as well as the number of operations required has been de�ned and/oranalyzed in [13℄. The number of oating point operations of the traditional method, LUflops, is exatlygiven by LUflops = 2�(n� 1)33 + (n� 1)22 + (n� 1)6 �+ n2 � n2 (1)whih is usually referred to as 2n3=3 [9℄. Sequential as well as parallel approahes are based in theblok-proessing right-looking algorithm [9℄ [2℄ [8℄, de�ned in terms of a partition suh as that shown inFig. 1, where bs is the blok size seleted to optimize the sequential and/or parallel performane. From
=

A
11

A
12

A
21

A
22

bs n−bs

bs

n−bs

AFigure 1: Blok Partition of a Matrix.a matrix partition suh as that shown in Fig. 1, omputing is made by LU fatorizing A11 and updatingthe trailing matrix, i.e. A12, A21, and A22. In terms of the partition shown in Fig. 1, the LU fatorizationto be omputed is suh that
L

11
0

L
22

 0

 0
L

21

×

U
11

0
U

22

 0

 0

U
12

A
11

A
12

A
21

A
22

A

=

L UFigure 2: Partition of Matries A, L, and U .i.e., A11 = L11 � U11 (2)A12 = L11 � U12 (3)A21 = L21 � U11 (4)A22 = L21 � U12 + L22 � U22 (5)And, as explained above, the A11 blok is fatorized and the rest of the bloks are updated in order toompute matries L and U . Having fatorized the A11 blok implies having L11 and U11, i.e., the wholeEq. (2) above is ompletely omputed. It is neessary to obtain L12, U12, L22, and U22. To obtain U12and L21 E. (6) and E. (7) are applied respetively, whih are derived from E. (3) and E. (4) aboverespetively: U12 = L�111 � A12 (6)L21 = A21 � U�111 (7)It is important to note that L�111 and U�111 are very easy to alulate from L11 and U11 sine thesematries are triangular (lower and upper tiangular respetively). In terms of BLAS (Basi Linear AlgebraSubroutines) [7℄ [11℄, U12 and L21 are obtained by using diretly the funtions to solve triangular systems2

of equations with multiple right hand sides, TRSM. The remaining problem is to �nd out L22 and U22, andfor this task, E. (5) is used aording to E. (8)L22 � U22 = A22 � L21 � U12 (8)Thus, �nding out L22 and U22 from A22 is the same as �nding out L22 and U22 from A22 � L21 � U12,i.e. A22 is updated to have A22 � L21 � U12 and the same bloking proedure an be diretly applied tothe updated submatrix A22. The bloking proedure is intensively and suessfully used in sequential aswell as parallel approahes.The broadast-based parallel LU matrix fatorization has been de�ned in [14℄ using the ideas pre-sented in [15℄ [12℄ [13℄. The matrix partitioning is hosen following the so-alled row blok yli matrixdistribution [10℄; the matrix is divided in many more bloks than omputers and assigned ylially asshown in Fig. 3 for four proessors P1; : : : ; P4, where a blok size (bs) has to be de�ned. Eah row blokhas bs rows, i.e., bs � n elements. This matrix distribution among omputers an be de�ned in general
=

P
1

P
2

P
3

P
4

A

bs

P
1

P
2

P
3

P
4 bsFigure 3: Row Blok Cyli Partitioning.as follows. If a matrix of order n is divided into row bloks of size bs, there will be nb = n=bs row bloksrb1; :::; rbnb to be assigned among the available omputers. In general, proessor Pi will have bloks rbjsuh that i = (j � 1) mod p + 1, 1 � j � nb, where p is the number of omputers (P1; : : : ; Pp). Inthis ontext, when fatorizing a matrix blok of bs � n elements, three of the submatries of Fig. 2 arefound: L11, U11, and U12 as shown in Fig. 4. The three other submatries (L21, L22, and U22) are found

bs L
11

0 0 × U
11

 0
U

12=

bs

bs

n−bs bs n−bsbs n−bs

A
11

A
12Figure 4: LU on a Row Blok.following the same guidelines as in the ase of the two-dimensional matrix distribution. Matrix L21 isfound by omputing L21 = A21�U�111 , Eq. (7), using BLAS TRSM, and matries L22 and U22 are obtainedapplying the same proedure to the updated matrix A22 � L21 � U12. Fig. 5 shows the pseudoode ofthe proess for omputer Pi with whih the whole broadast-based parallel LU fatorization algorithman be de�ned, where� p is the total number of omputers used in parallel for the LU fatorization, identi�ed from 0 top-1.� nb is the total number of bloks, whih depends on the bloking size bs. Bloks are globallynumbered aross omputers from 0 to nb, i.e., omputer Pi (0 � i � p-1) has bloks i mod p.� On the line Fatorize blok j matries L and U are obtained from blok j with partial pivoting,whih is used for numerial stability. 3

if (i == 0)Fatorize and send_broadast blok 0for (j = 0; j < nb; j++){ if (i == (j mod p)) /* Current blok is loal */Update loal blokselse if (i == ((j+1) mod p)) /* Next blok is loal */{ rev_broadast_b (fatorized blok j)Update and Fatorize blok j+1send_broadast_b (fatorized blok j+1)Update loal bloks (blok j+1 already updated)}else /* P_i does not hold blok j nor blok j+1 */{ rev_broadast_b (fatorized blok j)Update loal bloks (blok j+1 already updated)}}Figure 5: Parallel LU Matrix Fatorization Algorithm with Overlapped Communiations.� The trailing matrix is, in fat, \the" A22 de�ned above, whih is updated via a matrix multipli-ation.� send_broadast_b and rev_broadast_b are the funtions to send and reeive broadast mes-sages in bakground respetively.The algorithm de�ned in Fig. 5 ontains the idea of next blok to the lassial algorithm. Given thatthe LU fatorization and its orresponding broadast message impose waiting (possible for a long time inEthernet-based lusters) on p�1 omputers, the next blok is fatorized and sent ahead (in bakground)allowing overlapped ommuniation with loal omputing. Basially, the broadast operation is intendedto omplete while every omputer is updating the trailing matrix.2 Performane Analysis of the Parallel AlgorithmThe idealized ase in whih omputing and ommuniation are overlapped and there is no overhead dueto broadast messages (exept for the ommuniation of the �rst blok) is shown in Fig. 6. Most of the
Bcast

0

Proc
0

Bcast
1

Proc
1

Bcast
2

Proc
nb−1

Bcast
nb

Time

Proc
nbFigure 6: Overlapped Computing and Communiation.loal omputing time in eah omputer (shown as Proi on Fig. 6) is mainly due to the trailing matrixupdate whih inludes a matrix multipliation. The following performane analysis is made taking intoaount:1. The distribution of the trailing matrix update.2. That Communiation is arried out onurrently with omputing (in bakground).From the point of view of the program running on eah omputer, whose pseudoode is shown in Fig. 5,on eah iteration j, omputers exeute one of the three alternatives de�ned in the pseudoode, as shownin Fig. 7. On iteration j, proessor holding the urrent blok, Pj mod p, just updates the rest of the loalbloks of the trailing matrix, i.e. rbk with k > j. This is shown in Fig. 7 with the sequene4

P
j mod p

P
j+1 mod p

P
k

Time

Receiving Broadcast

Sending Broadcast

Receiving Broadcast

Piv(local≠j) L
21

(local≠j) A
22

(local≠j)

Piv(local≠j+1) L
21

(local≠j+1) A
22

(local≠j+1)

Piv(local) L
21

(local) A
22

(local)

Piv(j+1) A
22

(j+1) LU(j+1)L
21

(j+1)

t
j

k j mod p,

k j+1 mod p Figure 7: Computing on Eah Proessor.� Piv(loal 6= j): apply pivots on every loal blok exluding the urrent blok,� L21(loal 6= j): ompute L21 on every loal blok exluding the urrent blok,� A22(loal 6= j): ompute/update A22 on every loal blok exluding the urrent blok,beause the urrent blok has been updated/omputed in the previous iteration. Also, omputer Pj mod preeives in bakground the next urrent blok whih will be neessary in the next iteration: rbj+1. Theproessor holding the next urrent blok on iteration j, Pj+1mod p, has to update and LU fatorize thenext urrent blok. This is shown in Fig. 7 with the sequene:� Piv(j+1): apply pivots only to blok j + 1.� L21(j + 1): ompute the submatrix of L21 orresponding to blok j + 1.� A22(j + 1): update the submatrix of A22 orresponding to blok j + 1.� LU (j + 1): LU fatorize the blok j + 1.One the blok j + 1 is fatorized it is sent in bakground to all the other omputers (from time tj viaa broadast routine). The rest of the proessing in proessor Pj+1mod p is straightforward. Most of theomputers, Pk with k 6= (j mod p) and k 6= (j + 1 mod p), have simple omputing and ommuniationtasks: update loal bloks and reeive in bakground the next urrent blok one the broadast sendingbegins in proessor Pj+1mod p.The detailed view of proessing given in Fig. 7 is aurate but may lead to onfussion on relativerequirements of eah individual task. Fig. 8 shows shematially that most of the time needed for eahiteration is due to ommuniation and A22 update. There are two issues related to relative times shownin Fig. 8:1. The reason/s for whih A22 update requirements are greater than those of applying pivots plus L21omputing and also greater than updating and LU fatorizing a whole blok.2. The relationship between the time required by a broadast ommuniation and the time required byan A22 update, more spei�ally, whih one of both tasks requires more time than the other. Thisrelationship between the relative times is neessary to be able to predit the time of an iteration.One eah iteration time an be predited, the time predition for the whole algorithm is straightforward.5

P
j mod p

P
j+1 mod p

P
k

Time

Receiving Broadcast

Sending Broadcast

Receiving Broadcast

Piv, L
21

A
22

(local≠j)

A
22

(local≠j+1)

Piv, L
21

A
22

(local)

Piv...LU

t
j

k j mod p,

k j+1 mod p

Piv, L
21

Figure 8: Relative Times of Computing on Eah Proessor.2.1 Brief Performane Analysis of Computing SubtasksThe time required by subtasks of the algorithm should be detailed at least at the level of having aomparison in orders of magnitude. More spei�ally, the proessing requirements of eah task shownin Fig. 7 should be analyzed, i.e.: Piv(loal 6= j), L21(loal 6= j), A22(loal 6= j), Piv(j+1), L21(j + 1),A22(j + 1), LU (j + 1), Piv(loal), L21(loal), and A22(loal). Before analyzing every subtask in detail,basially: Piv, L21, A22, and LU omputing, it is useful to show in more detail how the algorithm of Fig.5 works on the original matrix to be fatorized.Taking into aount the pseudoode of Fig. 5 and the matrix partition into row bloks shown in Fig. 3,a matrix of n � n elements is proessed at the beginning of the algorithm as shown in Fig. 9, where the�rst blok of bs � n elements is ompletely ontained in proessor P0. Before the �rst iteration the �rst
L

11

A
22

L
21

U
11 U

12

n−bsbs

n−bs

bs

n

Figure 9: Proessing Before the First Iteration.blok of bs� n elements is proessed as a matrix and LU fatization is omputed, obtaining submatriesL11, U11, and U12, and the assoiated fatorization pivots. Given that the matrix is partitioned into rowbloks, the �rst proessor P0 omputes loally (without needing extra data/ommuniation) submatriesL11, U11, and U12, and assoiated pivots. From the point of view of libraries suh as LAPACK [2℄ orATLAS (Automatially Tuned Linear Algebra Software) [16℄ this is done via a single all to GETRF. Onthe �rst iteration, i.e. i = 1, with i = j + 1, where j is the pseudo-ode iteration index, several taskshave to be done:� Computing matrix L21.� Updating matrix A22.� Computing and sending broadast the LU fatorization on the next urrent blok.6

On this �rst iteration, the matrix is proessed as shown in Fig. 10, where
L

11
U

12
bs

n

A
22

L
21

n−bsbs

n−bs

bs

U
11

Figure 10: Proessing on the First Iteration.� The shaded submatrix of bs� n elements is to be omputed at proessor P1.� The dark submatrix of bs�n�bs elements is the next urrent blok to be sent in bakground whileomputing/updating matries L21 and A22 in all omputers, inluding P1.More spei�ally, let tL1 the submatrix of L21 to be omputed on the �rst iteration, tU1 the matrix U12to be omputed before the �rst iteration, and tA1 the submatrix of A22 to be omputed on the �rstiteration, tL1 2 IR(n�bs)�bstU1 2 IRbs�(n�bs)tA1 2 IR(n�bs)�(n�bs)And omputing on the �rst iteration involves� Applying pivots to the whole trailing matrix, inluding tL1 and tA1� Computing tL1 = A21 � U�111 = tL1 � U�111 .� Computing tA1 = A22 � tL1 � tU1 = tA1 � tL1 � tU1.However, the next urrent blok (in the �rst bs rows of tA1) is proessed in a di�erent way, in order to beLU fatorized and available on every omputer in the next iteration of the algorithm. The dark submatrixof tA1 is updated and LU fatorized in P1 before updating the rest of tA1 assigned to proessor P1.In general, in the i th iteration, the proessing an be shematially desribed as shown in Fig. 11.And de�ning tLi, tUi, and tAi as matries tL1, tU1, and tA1 but on i th iteration, i.e. tLi the submatrix
L

11
U

12
bs

A
22

L
21

n−i*bsbs

n−i*bs

bs

U
11

Figure 11: Proessing on the i th Iteration.7

of L21 to be omputed on the i th iteration, tUi the matrix U12 omputed before the i th iteration, andtAi the submatrix of A22 to be omputed on the i th iteration,tLi 2 IR(n�i�bs)�bstUi 2 IRbs�(n�i�bs)tAi 2 IR(n�i�bs)�(n�i�bs)And omputing on the i th iteration involves� Applying pivots to the whole trailing matrix, inluding tLi and tAi� Computing tLi = A21 � U�111 = tLi � U�111 .� Computing tAi = A22 � tLi � tUi = tAi � tLi � tUi.And the next urrent blok (in the �rst bs rows of tAi) is proessed in a di�erent way, in order to be LUfatorized and available on every omputer in the next iteration of the algorithm.2.1.1 Applying Pivots on the i th IterationThere are several alternatives in order to apply pivots and maintain data onsisteny as well as numerialstability. The minimum task to be done is trailing matrix update/pivoting with the pivots of the urrentLU fatorized blok. This implies updating tLi and tAi. However, it is worth noting that:� pivoting do not imply any oating point operation, just data movement.� there are at most bs olumn interhanges, sine pivots are produed/neessary on LU fatorizationof a matrix with bs� (n� i � bs) elements on i th iteration.and these are the reasons for whih pivoting is not taken into aount from the point of view of omputingtime analysis.2.1.2 Computing tLiComputing tLi implies tLi = A21 � U�111 = tLi � U�111with tLi 2 IR(n�i�bs)�bsU11 2 IRbs�bsThus, a triangular system with (n� i�bs) equations and bs unknowns is solved bs times to obtain/updatematrix tLi. In terms of the BLAS library [7℄ [11℄, tLi is obtained by using diretly the funtion tosolve triangular systems of equations with multiple right hand sides, TRSM. Roughly speaking, solving atriangular system of equations with the oeÆient matrix of bs � bs elements implies O(bs2) operations,and given that the triangular system of equations is solved with n� i � bs right hand sides, the numberof oating point operations is O((n � i � bs) � bs2). Thus, in general, omputing tLi requires O(n)operations, and taking into aount that bs is relatively small ompared to n the hidden onstant/s inthe O() notation annot be very large. Sumarizing,ReqF lops(tLi) = O(n) (9)where ReqF lops(tLi) is the number of oating point operations required to ompute tLi and, in fat, isa measure of the omputing time needed for tLi.2.1.3 Computing LU on the i th Iteration: LUiThe LU fatorization method on the i th iteration is applied to a submatrix of bs� (n� i � bs) elements.Following the desription made in [13℄ to alulate the number of ops for LU fatorization, the number8

of oating points required for the fatorization of a bs � (n� i � bs) elements matrix is given byReqF lops(LUi) = bsXi=1 2� (bs� i)� (n� i)= bsXi=1 2(bs � n � bs � i� i � n+ i2)= bsXi=1 2 � bs � n� 2 � (bs + n) � i+ 2 � i2whih is O(n) but with more terms than ReqF lops(LUi), and some of them being bs2 and bs3. However,it is still remarkable that ReqF lops(LUi) = O(n) (10)Furthermore, analyzing the evolution of omputing as i inreases (more iterations are made), the numberof ops dereases, so the number of ops is very small in the last iterations taking into aount the (bs�i)and (n� i) fators in the equations above.2.1.4 Updating tAiTaking into aount Fig. 8, this is the task with the greatest oating point requirements on eah iteration.Furthermore, the whole bloking method has been designed to have most of the operations in a matrixmultipliation and this is made in the updating of tAi. in order to update the trailing matrix, a matrixmultipliation should be done. More spei�ally, the operation to be arried out istAi = tAi � tLi � tUiwhere tAi 2 IR(n�i�bs)�(n�i�bs)tLi 2 IR(n�i�bs)�bstUi 2 IRbs�(n�i�bs)Eah element of the matrix multipliation tLi�tUi requires 2�bs�1 operations, and the resulting matrixis of (n � i � bs)� (n� i � bs) elements, thusReqF lops(tAi) = (2 � bs� 1) � (n� i � bs) � (n� i � bs) + (n� i � bs) � (n� i � bs) (11)Summarizing, ReqF lops(tAi) = O(n2) (12)2.1.5 Comparison of Subtasks RequirementsSummarizing, applying pivots requires a negligible running time, and from the previous subsetions:ReqF lops(tLi) = O(n)ReqF lops(LUi) = O(n)ReqF lops(tAi) = O(n2)and these equations justify a quite more formally the running times shown in Fig. 8. It is worth notingthat even though not every blok of tAi is updated at the same time or onurrently, the requirednumber of ops is O(n2) beause there is just one blok updated and LU fatorized ahead the rest: thenext urrent blok. 9

2.2 Brief Performane Analysis of BroadastUnfortunately, modeling the time required for a broadast operation is not as simple as using the well-known model for a point-to-point ommuniation:t(m) = �ptp + �ptp �m (13)where m is the amount of data to transfer, � is the ommuniation lateny or startup ost, and 1=�ptpis the network ommuniation bandwidth. Timing models for broadast ommuniation usually dependon the implementation seleted for the broadast routine in a spei� implementation. Many imple-mentations onstrut spanning trees and this implies logarithmi oeÆients on the timing models. Inthe spei� ase of the researh being made for parallel omputing in lusters, the broadast messageimplementation is suh that:� Data is physially broadasted using UDP, and there is not retransmission unless some data havebeen lost.� Aknowledgements are reeived at the broadast root from all the reeivers to provide a reliablebroadast message to the parallel appliation.These details are hidden to the user (pertain to the broadast implementation). Physial broadast plusthe low rate at whih data are lost in a loal area network produe a very good salability. However,lateny annot be modeled as in a point-to-point message, sine the time required for broadast aknowl-edgement/s and other tasks related to synhronization are found to be proportional to the number ofomputers involved in the ommuniation. Given that data is sent as in a point-to-point operation andthere is a very low rate of message loss, the time required for data transmission through the network anbe modeled as in the point-to-point messages, i.e. (�bast �m) in Eq. (13), with �bast �= �ptp beause thedata bandwidth of the broadast routine is not neessarily the same as that of point-to-point messages,and m = bs � (n� i � bs) in the i th iteration. More spei�ally, one blok has to be broadasted on eahiteration, whose size is m = bs � (n � i � bs). However, akowledgements sent from reeivers to the rootattempt against salability, beause these messages annot be reeived simultaneously at the broadastroot. Even when there are multiple ways of avoiding suh performane drawbak, it is still possible toanalyze the time required by broadast messages (and the parallel program using this broadast version)from the point of view of the time required for ommuniation. Summarizing, the timing model for thebroadast operation in the i th iteration ist(bast(i; p)) = �b + lpp � (p� 1) + �bast � bs � (n � i � bs) (14)where �b is the lateny of the broadast implementation independently of the number of omputersinvolved, lpp is the lateny per proessor of the broadast implementation, p�1 is the number of reeiversin a broadast operation, and Eq. (14) is the timing model of the broadast implementation used in theurrent version of the parallel LU fatorization algorithm.2.3 Computing and Communiation Time RequirementsTaking into aount the pseudoode in Fig. 5 and the algorithm behavior desribed in Fig. 8, omputingtAi and broadast ommuniation of the next urrent blok in eah iteration should be ompared. Thebroadast ommuniation time in the i th iteration is given in Eq. (14), but the omputing time in eahiteration has been only partially given above.The number of oating point operations for updating the trailing matrix is given in Eq. (11). Twoimportant fators should be taken into aount for modeling the omputing time:� The proessing workload is evenly distributed amongst p omputers, and eah one of them has toarry out 1=p of the total workload. Thus, omputing is made simultaneously in p omputers andthe required time is redued by a fator of p.� The time required for a single oating point operation, whih has to be used to translate fromproessing workload in terms of number of oating point operations to omputing time.Rewriting Eq. (11)ReqF lops(tAi) = (2 � bs� 1) � (n� i � bs) � (n� i � bs) + (n� i � bs) � (n� i � bs)= (2 � bs� 1) � (n� i � bs)2 + (n� i � bs)2= (n � i � bs)2 � ((2 � bs � 1) + 1)= 2 � bs � (n� i � bs)2 (15)10

Taking into aount that the proessing workload is evenly distributed amongst p omputers, the expetedtime required for oating point operations on eah omputer in iteration i is modeled byet(tAi; p) = tf �ReqF lops(tAi)p= tf � 2 � bs � (n� i � bs)2p (16)where tf is the time required for a single oating point operation.Taking into aount Eq. (15), Eq. (14), and Fig. 8, the time required to omplete the parallelalgorithm on p proessors is given byet(parLU; p) = n=bsXi=1 max(et(tAi; p); t(bast(i; p))) (17)It is expeted that the numerial omputing time in the �rst iterations is greater than the time requiredby broadast ommuniations. Also, given that� the trailing matrix is made smaller as more iterations are ompleted, and� broadast message lateny is onstant from the point of view of trailing matrix size,there is some iteration value k, for whih omputing time is lower than ommuniation time, i.e.,et(tAi; p) � t(bast(i; p)); i � ket(tAi; p) < t(bast(i; p)); i > kand Eq. (17) beomes et(parLU; p) = kXi=1 et(tAi; p) + n=bsXi=k+1 t(bast(i; p)) (18)The spei� value of k is dependent on many fators, and the analysis would be highly simpli�ed if it wereknown a priori. More spei�ally, the analysis an be made by �nding out the value at whih omputingtime is equal to ommuniation time, i.e.tf � 2 � bs � (n� i � bs)2p = �b + lpp � (p� 1) + �bast � bs � (n� i � bs) (19)For a �xed value of p �b + lpp � (p� 1) is onstant, and given that (n � i � bs) hanges with i:�p = �b + lpp � (p � 1) (20)is = n� i � bs (21)Thus, Eq. (19) an be rewritten as((tf � 2 � bs)=p) � is2 = �p + �bast � bs � is (22)whih an be rewritten as the quadrati equation((tf � 2 � bs)=p) � is2 � �bast � bs � is � �p = 0((tf � 2 � bs)=p)| {z }a �is2 +��bast � bs| {z }b �is +��p|{z} = 0i.e. a � is2 + b � is + = 0 (23)with a = (tf � 2 � bs)=p (24)b = ��bast � bs (25) = ��p (26)11

and the values of is whih satisfy Eq. (23) are given by the quadrati formulais = �b�pb2 � 4 � a � 2 � a (27)A quite deeper analysis is now needed to �nd out at least if it an be assured that the square root isapplied to a number greater than 0. Taking into aount Eq. (24) and Eq. (25), the term�4 � a � = �4 � ((tf � 2 � bs)=p) � (��p) = 4 � �p � (tf � 2 � bs)=p > 0 (28)and, thus, b2 � 4 � a � > 0and there will be two values 2 IR from the results of the square root to suh expression. Now, it isneessary to know whih value of is will be used, given that Eq. (27) provides two. De�ningis+ = �b+ ��pb2 � 4 � a � ��2 � a (29)and is� = �b� ��pb2 � 4 � a � ��2 � a (30)it is neessary to know whether is+ or is� will be used. Taking into aount Eq. (28),���pb2 � 4 � a � ��� > ���pb2��� (31)thus, + ���pb2 � 4 � a � ��� > jbj (32)and, given that b < 0, + ���pb2 � 4 � a � ��� > �b (33)and this implies �b� ���pb2 � 4 � a � ��� < 0 =) is� < 0 (34)In fat, this value of is� should be used to �nd out the value of k, and using Eq. (21),k� = n� is�bs (35)but, given that is� < 0, k� = n� is�bs = nbs + �is�bs > nbs (36)and this value of k is not useful, sine k should be suh that 1 � k � n=bs aording to Eq. (18). On theother hand, �b + ���pb2 � 4 � a � ��� > 0 =) is+ > 0 (37)and k+ = n� is+bs = nbs � is+bs < nbs (38)and this value, k+, has to be used for k in Eq. (18) or, in fat, the integer number immediately greaterthan k+ as de�ned in Eq. (38).Summarizing, the expeted time for the broadast-based parallel LU fatorization algorithm with thebroadast implemented suh as desribed in subsetion 2.2 for a �xed number of omputers iset(parLU; p) = kXi=1 et(tAi; p) + n=bsXi=k+1 t(bast(i; p))et(parLU; p) = kXi=1 tf � 2 � bs � (n� i � bs)2p + n=bsXi=k+1�p + � � bs � (n � i � bs) (39)12

with k = n� is+bs = n� �b+jpb2�4�a�j2�abs (40)a = tf � 2 � bsp (41)b = ��bast � bs (42) = ��p (43)where� bs is the blok size used for the parallel algorithm.� tf is the time required for a single oating point operation.� 1=�bast is the network ommuniation bandwidth ahieved with the broadast ommuniationroutine.� �p is the ommuniation lateny or startup ost of the broadast ommuniation routine with pomputers.� p is the �xed number of omputers.3 Comparison with SaLAPACK: Performane AnalysisThe expeted time for the Salapak LU fatorization algorithm is well known [4℄ [5℄ [3℄:et(SaLU; p) = 2 � n33 � p tf + (3 + log2(p)=4) � n2pp �ptp + (6 + log2(p)) � n � �ptp (44)where �ptp and �ptp are the message lateny and the inverse of the bandwidth for point-to-point messagesrespetively, and the rest of parameters/oeÆients have already been explained and used. Some di�erentpoints of view prevent a diret omparison between Eq. (39) and Eq. (44) above. The �rst di�erentapproah in modeling the required time is on the number of oating point operations. The �rst term ofEq. (44) reets the number of oating point operations in SaLAPACK's timing model: 2=3�n3. This isthe traditional number of operations for the sequential LU fatorization as given in the literature [9℄. Thetiming model given for the proposed parallel algorithm takes into aount that most of the omputingtime is needed for the trailing matrix update whose number of operations is given in Eq. (15) for the i thiteration. However, both algorithms are diretly based on the bloked LU fatorization, so the numberof oating point operations should be the same and a deeper omparison analysis is not neessary todetermine whih one -Eq. (39) or Eq. (44)- is more aurate.The SaLAPACK timing model for ommuniation is reeted in the seond and third terms ofEq. (44). The �rst strong di�erene with the approah proposed in this report is that SaLAPACK'sommuniation osts are taken into aount for every blok/element of the matrix. On the other hand,for the approah proposed in this paper, Eq. (17) and Eq. (18) diretly reet that a broadast ommu-niation adds time to the total expeted algorithm time only when it is greater than the orrespondingtrailing matrix update time. Even if the numerial omputing time is greater than the broadast timein only a few iterations -e.g. k = 20 or k = 30 in Eq. (18), the ommuniation time (in those iterations)would not add time to the total proessing time, sine it is overlapped with numerial omputing. How-ever, the broadast timing model of Eq. (14) is far from optimal and implies at least that the latenygrows linearly with the number of proessors. On the other hand, SaLAPACK relies on spanning treesand, thus, the timing model implies a logarithmial growth depending on the number of proessors.The next subsetion will show a small example of the expeted time for eah algorithm on a urrentluster. The spei� values of parameters needed for modeling the performane of eah algorithm aregiven, along with their similarities/di�erenes.3.1 Expeted Times: Spei� ExampleHaving a real luster, it is possible to alulate the expeted time of eah parallel algorithm using Eq. (44)and Eq. (39) for the SaLAPACK and the broadast-based LU fatorization algorihtms respetively. The13

Table 1: Cluster Charateristis.Clok Mem Mop/s (DGETRF)2.4 GHz 1 GB �= 2500spei� luster is omposed of 20 idential omputers, whose harateristis are summarized in Table 1and the interonnetion network is 100 Mb/s Ethernet with omplete swithing. The spei� values forthe parameters required by the SaLAPACK time model are given in Table 2, where �ptp and �ptp wereTable 2: SaLAPACK's Parameter Values.Parameter Valuep 20tf (2500 � 106)�1 se.�ptp (11:6=8 � 106)�1 se.�ptp 200 � 10�6 se.measured with the MPICH implementation of MPI, using the ping-pong program distributed along withthe implementation. Given the memory available on eah omputer and the number of omputers, thematrix size was set to n = 45000. The expeted running time of the SaLAPACK's LU on the lusterwith 20 omputers just desribed is omputed using Eq. (44):et(SaLU; 20) �= 2582 se: (45)Taking into aount that� 20 omputers of approximately 2.5 Gop/s have a omputing power of aproximately 50 Gop/s,� the total number of oating point operations required for a LU fatorization of a matrix of 45000�45000 elements is 2/3 * 450003,the theoretial (minimum) time for 20 omputers is given bytt(LU; 20) = 1215 se: (46)And this implies that the expeted (parallel) eÆieny of the SaLAPACK parallel LU fatorizationalgorithm is ee(SaLU; 20) = tt(LU; 20)et(SaLU; 20) �= 12152582 �= 0:47 (47)Thus, it is expeted that the SaLAPACK parallel LU matrix fatorization algorithmwill make use of lessthan 50% of the available omputing power of this spei� luster. LU matrix fatorization is speiallypenalized in SaLAPACK's two dimensional matrix distribution due to the partial pivoting needed fornumerial stability. Partial pivoting implies a olletive ommuniation in a row or a olumn of proessors(for pivot seletion) whih implies a group ommuniation penalization in an algorithm de�ned mainlyfor point-to-point ommuniations. Given that the proposed parallel LU matrix fatorization distributesdata by olumn blok or row blok, this penalization is not found.On the other hand, the spei� values for the parameters required by the time model of the parallelLU matrix fatorization proposed in this report are given in Table 3. The values of p and tf are exatlythe same as those given in Table 2, for the SaLAPACK analysis. The data bandwidth obtained by thebroadast routine implemented on top of UDP, 1=�bast is similar to that obtained by MPICH point-to-point messages. More spei�ally, the data bandwidth of the implemented broadast routine is about13.8% worse than that obtained by MPICH point-to-point messages. The ommuniation lateny of theimplemented broadast routine for 20 omputers, �p, is muh worse than that of the MPICH point-to-point messages. One of the reasons has been explained above: aknowledgements are sent from everyreeiver (19 in this spei� ase) to the sender. More spei�ally, the value of �p is about three ordersof magnitude worse than �ptp. The parameter bs in Table 3 is relatively new beause there is not asimilar parameter for the SaLAPACK analysis. However, SaLAPACK routines do need suh a value14

Table 3: Broadast-Based Parameter Values.Parameter Valuep 20tf (2500 � 106)�1 se.�bast (10=8 � 106)�1 se.�p 0.1 se.bs 64for running on a given parallel platform (and, also, that of the proessors grid on�guration). There arenot many possible values for bs, being 32, 64, and 128 the most used in the SaLAPACK referenes. Thesame values (32, 64 and 128) ould be used for the broadast-based parallel LU fatorization analysis,64 was �nally used in the experiments. The matrix size was set as for the SaLAPACK analysis, i.e.n = 45000. The expeted running time of the proposed parallel LU fatorization routine on the lusterwith 20 omputers just desribed is omputed using Eq. (39). The �rst value to be obtained is thespei� iteration in whih ommuniation time is greater than omputing time, k in Eq. (40):k = 363 (48)and this means that the ommuniation time of the �rst 363 iterations is expeted to be hidden by thethe omputing time. Also, it is worth noting that the rest of the iterationsnbs � k = 4500064 � 363 �= 703� 363 = 340omputing is hidden by ommuniation time, i.e. omputing time is not added to ommuniation time,sine ommuniations are arried out onurrently. Now, it is possible to obtain the expeted time forthe parallel LU fatorization using Eq. (39):et(parLU; 20) �= 1298 se: (49)whih is very near the maximum theoretial time, tt(LU; 20) = 1215 seonds. The expeted eÆieny ofthe broadast-based parallel LU fatorization isee(parLU; 20) = tt(LU; 20)et(parLU; 20) �= 12151298 �= 0:94 (50)Thus, it is expeted that the proposed parallel LU matrix fatorization algorithm will use about 94% ofthe available omputing power of this spei� luster.From the point of view of the analysis, the proposed parallel algorithm is far better than the SaLA-PACK algorithm for parallel LU fatorization at least on this spei� luster. The SaLAPACK algorithmis expeted to use 47% of the available omputing power while the proposed parallel algorithm is expetedto use about 94% of the available omputing power. The experimentation should make lear the aurayof the time models as well as the real performane di�erene between both algorithms at least on thespei� luster desribed in this setion.4 Comparison with SaLAPACK: ExperimentationSome simple experimentation will larify the omparison on a real environment. Computers (PCs) usedfor experimentation have the harateristis summarized above in Table 1, whih is opied hereClok Mem Mop/s (DGETRF)2.4 GHz 1 GB �= 2500and the interonnetion network is 100 Mb/s Ethernet with omplete swithing. Performane in the tableabove is given in Mop/s and DGETRF, the sequential LU matrix fatorization with double preisionoating point number representation, was used to measure sequential performane.The total number of available omputers is 20, and experiments were made with 2, 4, 8, 16, and20 omputers. Matrix sizes are saled up aording to the number of omputers and memory available.15

Loal/sequential omputing is made by using fully optimized ATLAS BLAS (AutomatiallyTuned LinearAlgebra Software BLAS) [16℄. SaLAPACK ommuniation is made as usual: BLACS (Basi LinearAlgebra Communiation Subroutines) implemented on top of MPICH implementation of MPI. Everypossible bidimensional proessors grid P � Q was onsidered for SaLAPACK routines, e.g. for 16proessors, the experimental grids were: 1�16, 16�1, 2�8, 8�2, and 4�4. Also, square blok sizes wereused for SaLAPACK routines: 16, 32, 64, 100 and 128. The proposed algorithm does not need to de�nea bidimensional proessors grid, and the blok values used for experimentation are the same as those usedfor SaLAPACK routines. Given the one-dimensional matrix partitioning and distribution desribed forthe algorithm, the matrix is divided in row bloks instead of square bloks.Figure 12 shows the parallel perfomane measured as eÆieny for LU matrix fatorization on di�erentnumber of omputers from 2 to 20. The matrix order (size) for eah number of omputers is shownbetween parenthesis on the x axis. Bars show the best eÆieny value obtained by the algorithms for eahnumber of omputers. Light gray bars labeled as \Sa" orrespond to values obtained by SaLAPACK'sPDGETRF. Dark gray bars labeled as \Prop" orrespond to values obtained by the proposed parallel LUmatrix fatorization algorithm. It is worth to mention the similarity among the SaLAPACK's results
2 (14000) 4 (20000) 8 (29000) 16 (41000) 20 (45000)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Sca Prop

Number of Computers (Matrix Order)

E
ff

ic
ie

nc
y

Figure 12: LU Matrix Fatorization EÆieny.shown in Fig. 12 with those in [5℄, where SaLAPACK is used for LU matrix deomposition and linearequation system solving. In Fig. 12 as well as in [5℄ the eÆieny is about 0.5 (or 50% of the totalavailable omputing power).Experiments made using di�erent numbers of omputers -2, 4, 8, 16 and 20- make it possible toevaluate the performane from the point of view of salability. This salability analysis an be madewith the timing models given in the previous subsetion. The proposed algorithm performane is betterthan that implemented in SaLAPACK from the point of view of \raw" eÆieny and performanedegradation from 2 to 20 omputers. The proposed parallel LU matrix fatorization algorithm eÆienyfor 20 omputers is about 7% worse than the eÆieny for 2 omputers, while SaLAPACK eÆienyfor 20 omputers is about 23% worse than the eÆieny for 2 omputers. At least for this luster, thesalability of the proposed algorithm is better than that of the SaLAPACK algorithm.5 Conlusions and Further WorkThe timing model of the broadast-based parallel LU matrix fatorization has been introdued in thisreport. This timing model an be used for performane predition as well as for performane omparisonwith other approahes for parallel LU matrix fatorization.From the analytial point of view, the parallel LU matrix fatorization algorithm is expeted to obtainvery good performane (speedup and eÆieny) values. More spei�ally, using the time model given forthe algorithm the expeted eÆieny on a luster with 20 omputers is about 0.94, i.e. it is expeted touse about 94% of the available omputing performane on a spei� luster with 20 omputers. Usingthe timing model of the SaLAPACK parallel LU matrix algorithm for the same luster, the expetedeÆieny is about 0.47, i.e., the SaLAPACK parallel LU matrix fatorization algorithm expets to useless than 50% of the available parallel performane.Experiments have shown that the broadat-based parallel LU matrix fatorization algorithm obtainsbetter performane values than the SaLAPACK approah on a spei� luster. Also, experiments have16

shown that timing models for both parallel algorithms are very aurate at least for the total number ofomputers available for experimentation. Table 4 shows the summary of the timing models as well as theexperimentation for 20 omputers. Values in the olumn Expeted E�. are obtained using the timingTable 4: Summary of Values for 20 Computers.Algorithm Expeted E�. Experim. E�. Auray % Better (Experim.)SaLAPACK 0.47 0.44 +6.8% -Broadast-Based 0.94 0.86 +9.3% 95.45%models for the algorihtms and values in the olumn Experim. E�. are those obtained in the experimenton the urrent luster with 20 omputers. Timing models auray is shown in the olumn Aurayof Table 4 and the last olumn show that the broadast-based algorithm obtains more than 95% betterperformane than the SaLAPACK algorithm on this spei� luster.Table 5 shows the summary of the experimentation in the luster. Values in the olumns SaLAPACKE�. and Broadast-Based E�. were obtained in the experimentation on the lusters with di�erentnumbers of omputers. Values in the olumn % Better (Broadast-Based) show that the broadast-Table 5: Experimentation Summary.Number of Computers SaLAPACK E�. Broadast-Based E�. % Better (Broadast-Based)2 0.57 0.92 61.2%4 0.59 0.92 56.49%8 0.48 0.93 92.01%16 0.45 0.9 99.36%20 0.44 0.86 95.35%based LU fatorization algorithm obtains muh better performane than the SaLAPACK LU matrixfatorization algorithm. Furthermore, as the number of omputers is greater, the di�erene in performanebetween both algorithms is better for the broadast-based one, thus showing that the broadast-basedalgorithm has better salability than the SaLAPACK algorithm.

17

Referenes[1℄ Anderson E., Z. Bai, C. Bishof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,A. MKenney, D. Sorensen, \LAPACK: A Portable Linear Algebra Library for High-PerformaneComputers", Proeedings of Superomputing '90, pages 1-10, IEEE Press, 1990.[2℄ Anderson E., Z. Bai, C. Bishof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammar-ling, A. MKenney, S. Ostrouhov, D. Sorensen, LAPACK Users' Guide (Seond Edition), SIAMPhiladelphia, 1995.[3℄ Blakford L., J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammar-ling, G. Henry, A. Petitet, K. Stanley, D. Walker, R. Whaley, SaLAPACK Users' Guide, SIAM,Philadelphia, 1997.[4℄ Chen Z., J. Dongarra, P. Luszzek, K. Rohe, \Self adapting software for numerial linear algebraand LAPACK for lusters", Parallel Computing 29, pp. 1723-1743, Elsevier B.V., 2003.[5℄ Chen Z., J. Dongarra, P. Luszzek, K. Rohe, \The LAPACK for Clusters Projet: an Exampleof Self Adapting Numerial Software", Proeedings of the 37th Hawaii International Conferene onSystem Sienes, pp. 1-10, 0-7695-2056-1/04, IEEE, 2004.[6℄ Choi J., J. Dongarra, L. Ostrouhov, A. Petitet, D.Walker, R.Whaley, \The Design and Implementa-tion of the SaLAPACK LU, QR, and Cholesky Fatorization Routines", Report ORNL/TM-12470,Sep. 1994. Also available as a \lawn".[7℄ Dongarra J., J. Du Croz, S. Hammarling, R. Hanson, \An extended Set of Fortran Basi LinearSubroutines", ACM Trans. Math. Soft., 14 (1), pp. 1-17, 1988.[8℄ Dongarra J., D. Walker, \Libraries for Linear Algebra", in Sabot G. W. (Ed.), High PerformaneComputing: Problem Solving with Parallel and Vetor Arhitetures, Addison-Wesley PublishingCompany, In., pp. 93-134, 1995.[9℄ Golub G., C. Van Loan, Matrix Computations, 2nd Edition, The John Hopkins University Press,1989.[10℄ Kumar V., A. Grama, A. Gupta, G. Karypis, Introdution to Parallel Computing. Design andAnalysis of Algorithms, The Benjamin/Cummings Publishing Company, In., 1994.[11℄ Lawson C., R. Hanson, D. Kinaid, F. Krogh, \Basi Linear Algebra Subprograms for FortranUsage", ACM Transations on Mathematial Software 5, pp. 308-323, 1979.[12℄ Tinetti F. G., \C�omputo Paralelo en Redes de Estaiones de Trabajo para Apliaiones Basadas enAlgebra Lineal", Fernando G. Tinetti, Reporte T�enio PP004 - 01, Centro de T�enias Anal�ogio-Digitales (CeTAD), Fa. de Ingenier��a, Laboratorio de Investigai�on y Desarrollo en Inform�atia(LIDI), Faultad de Inform�atia, Laboratorio de Qu��mia Te�oria (LQT), CEQUINOR, Departa-mento de Qu��mia, Faultad de Cienias Exatas, Universidad Naional de La Plata, Julio de 2001.[13℄ Tinetti F. G., \LU Fatorization: Number of Floating Point Operations and Parallel Proessing inClusters", Laboratorio de Investigai�on y Desarrollo en Inform�atia (LIDI), Faultad de Inform�atia,Universidad Naional de La Plata, Mayo de 2003, Reporte T�enio PLA-001-2003.[14℄ Tinetti F. G., \Guidelines for Parallel Linear Algebra on Ethernet-Based Clusters: Matrix Multi-pliation and LU Fatorization Results", Laboratorio de Investigai�on y Desarrollo en Inform�atia(LIDI), Faultad de Inform�atia, Universidad Naional de La Plata, Junio de 2003, Reporte T�enioPLA-002-2003.[15℄ Tinetti F. G., E.Luque, \Parallel Matrix Multipliation on Heterogeneous Networks of Worksta-tions", Proeedings VIII Congreso Argentino de Cienias de la Computai�on (CACIC), Fa. deCienias Exatas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina, p. 122, Ot.2002. Available at http://lidi.info.unlp.edu.ar/ fernando/publis/pmm.pdf[16℄ Whaley R. C., A. Petitet, J. J. Dongarra, Automated Empirial Optimization of Software and theATLAS Projet. Available at http://www.netlib.org/lapak/ lawns/lawn147.ps18

