
Install and Use mongodb nodejs Driver with a mongdb Replica Set

Fernando G. Tinetti*, Agustín Terruzzi

Technical Report TR-BDD-02-2017

III-LIDI, Fac. de Informática, UNLP

*Also with CIC, Prov. de Buenos Aires

Argentina

contact e-mail: fernando@info.unlp.edu.ar

April 2017

Abstract. We document the installation of nodejs and the nodejs driver for mongodb

operation from scratch, along with a few javascript scripts operating with a mongodb replica
set. Even when there are many similar reports on nodejs and mongodb nodejs driver, we did

not find anyone simple enough for a simple environment: nodejs code operating with an

already installed mongodb replica set in a cluster-like environment. On one hand, some
guides are too similar to a reference manual in that many details are assumed already known

and only describe some commands and tools. On the other hand, there are many tutorials

describing much more complex environment/s, including infrastructures/frameworks for

web applications development and deployment, schema-like operations on mongodb, etc.,
none of which we are interested in, at least initially. We document in this report a step-by-

step guide starting with a stand-alone computer (initially in the same LAN) without any

infrastructure software other than the network connection and ending that computer being
able to operate on a mongodb replica set database using javascript code. The initial goal is

to have an environment for experimentation with a replicated mongodb database.

1.- Introduction

We are interested in having a nodejs application operating with a mongo replica set already installed and in
operation in a cluster-like environment. Actually, the current configuration is described in Fig. 1: a

computer with VirtualBox hosting three virtual machines (vm) on which a mongo replica set is running [1].

Even when the scenario in Fig. 1 is rather limited, it is not far from a general-purpose one. More

Figure 1: Initial Environment.

Host Computer

Guests

(VirtualBox)

computers

Computer

mongo replica

set, “Bridged

Adapter”

specifically, we replicate the cluster-like environment in which the mongo replica set usually run. The
relationship/coupling among VirtualHost host-guests is clearly far from being a production environment,

but allows a single environment for carrying out several experiments in an affordable infrastructure. We

specifically simplified the network setting/s to the VirtualBox “Bridged Adapter” so that the vm have

internet access by default and the host computer is in the same LAN as the vm.

In this report, we make a step-by-step guide for the installation, configuration, and usage of nodejs and the

nodejs mongodb driver in a computer so that a nodejs application is able to operate on a mongodb replica
set. Since the host computer we are using has a windows operating system (OS), the installation details will

be “restricted” to that OS, but the general configuration and nodejs code is, in fact, platform independent,

so we expect this report to be useful in several other scenarios as well. As a “collateral effect” of installing
nodejs and the mongodb nodejs driver in a Windows computer, we will have a heterogeneous environment,

which is rather usual in the context of distributed systems.

2.- Installation and Configuration of nodejs

The nodejs software infrastructure is obtained at its web site [2], as shown in Fig. 2 for the Windows OS

without installer (aka binary distribution).

Figure 2: Download Windows Binary nodejs.

Trying to install in the selected place (c:\users\fernando\mydir\catedras\mongodb\nodejs\v2) generates an

error, as shown in Fig. 3. The error may be due to the program used to handle the .zip, 7-zip.

Figure 3: Problem in the Binary Unzip and Copy.

We are aware this is a minor error and unrelated to nodejs, but we want to document it in either case, just

as an example of minor details/problems found in this kind of nodejs installation. The work-around to this

problem is simple: unzip to a “short” pathname directory (c:\users\fernando\mydir\tmp) and copy de

unzipped material to the original/selected one, as shown in Fig. 4 and Fig. 5.

Figure 4: Unzip to a “Short” Pathname Directory.

Figure 5: nodejs Directory.

Given that we chose to install binaries, we have to set path and other environment variables. We have

defined a node_env.bat file to do so:

Node_env.bat

==

set PATH=C:\Users\fernando\MyDir\catedras\mongodb\nodejs\v2\node-v6.10.1-win-x64;%PATH%

nodevars.bat

==

The installation or, at least, the node executable functionality can be verified with the command

node -v

as shown in Fig. 6, where the node command shows the node version installed in the computer.

Figure 5: nodejs Installation Minimum Check.

And install the npm “environment”, as suggested in [3] [4] [5], because most nodejs application will depend

on several nodejs modules, easily managed by npm. The npm installation is made with

npm install npm@latest -g

as shown in Fig. 6, where it is also shown some of the actual installation process output.

… and lots of similar output, up to

… and lots of similar output, up to

Figure 6: Installation/Update of npm.

3.- Installation and First Tests of the mongodb nodejs Driver

The nodejs driver installation is straightforward [6], according to “Install MongoDB Node.js Driver”

C:\Users\fernando>npm install mongodb -g

(-g option used just in case install node module as global module…) as shown in Fig. 7.

Figure 7: mongodb nodejs Driver Install.

At this point, a nodejs application is able to connect to a mongodb database, including one handled by a

replica set given that the connection is made to the server acting as the replica set primary. Following the

guide at [6], the code in connect.js containing

connect.js

===

var MongoClient = require('mongodb').MongoClient;

var assert = require('assert');

var url = 'mongodb://192.168.0.160:27017/test';

MongoClient.connect(url, function(err, db) {

 assert.equal(null, err);

 console.log("Connected correctly to server.");

 db.close();

});

===

(the mongo replica set primary node is running at 192.168.0.160, and listens to connections in the default

mongodb server port) is used as an example for database connection as shown in Fig. 8 with

node connect.js

where an error is reported by nodejs (as expected, actually). The problem is not related to mongo, but to the

nodejs module handling: connect.js requires the module “mongodb”, which is already installed as a global

module, but not “reachable” by the connect.js execution environment (yet). More specifically,

C:\Users\fernando\MyDir\catedras\mongodb\mynodejs>node connect.js

Fails because the mongodb module is not directly related to this nodejs code. The mongodb module has to

be “linked” to this code with

C:\Users\fernando\MyDir\catedras\mongodb\mynodejs>npm link mongodb

Thus, the right sequence would be (the first step is needed only once)

C:\Users\fernando\MyDir\catedras\mongodb\mynodejs>npm link mongodb

…

C:\Users\fernando\MyDir\catedras\mongodb\mynodejs>node connect.js

as shown in Fig. 9, where the successful output is also shown, i.e.

C:\Users\fernando\MyDir\catedras\mongodb\nodejs>node connect.js

Connected correctly to server.

Figure 8: First Attempt to mongodb Connection.

Figure 9: Link mongodb Driver Module and run mongodb Connection.

It is worth noting that the connection is possible given that the computer where the javascript code is run is

able to reach the mongodb replica set primary node. More specifically, this is one of the reasons why the

VirtualBox host computer is in the same LAN as the vm with the mongodb replica set, given that every vm

network is defined as a so called “Bridged Adapter” in the VirtualBox vm manager.

The guide at [7] is followed in order to insert documents in a mongodb database, i.e. the insert.js code

connects to a mongodb and inserts a document, where insert.js is as follows (directly copied from [7] in

order to avoid confusions for changing the code).

insert.js
===

var MongoClient = require('mongodb').MongoClient;

var assert = require('assert');

var url = 'mongodb://192.168.0.160:27017/test';

var insertDocument = function(db, callback) {

 db.collection('restaurants').insertOne({

 "address" : {

 "street" : "2 Avenue",

 "zipcode" : "10075",

 "building" : "1480",

 "coord" : [-73.9557413, 40.7720266]

 },

 "borough" : "Manhattan",

 "cuisine" : "Italian",

 "grades" : [

 {

 "date" : new Date("2014-10-01T00:00:00Z"),

 "grade" : "A",

 "score" : 11

 },

 {

 "date" : new Date("2014-01-16T00:00:00Z"),

 "grade" : "B",

 "score" : 17

 }

],

 "name" : "Vella",

 "restaurant_id" : "41704620"

 }, function(err, result) {

 assert.equal(err, null);

 console.log("Inserted a document into the restaurants collection.");

 callback();

 });

};

MongoClient.connect(url, function(err, db) {

 assert.equal(null, err);

 insertDocument(db, function() {

 db.close();

 });

})
===

Before using insert.js, the collection is such that it has already four documents (due to previous

experiments), as shown in Fig. 9, using the mongo console in the mongodb replica set primary node.

Figure 9: Number of Documents Before Using insert.js.

And using insert.js (which connects to the mongodb replica set primary node, running at 192.168.0.160) as

shown in Fig. 10 the result is reported successful in the client side (i.e. where the javascript code runs).

Figure 10: Insert a Document with insert.js.

In the server side, after using insert.js, the collection is such that there is one more document, as expected

after inserting one, as shown in Fig. 11.

Figure 11: Number of Documents after Using insert.js.

As explained above, the javascript client will be able to connect and operate on the mongodb database

replica set only if it uses the mongodb replica set primary node. One of the main disadvantages of this type

of clients is that the server working as the replica set primary node is defined at runtime. In our experiments,

the node in which the replica set is “ininiate()d” becomes the primary node, but it would change at runtime

depending on runtime conditions (e.g. due to node reset/shutdown, and/or network errors). If the server

explicitly referenced in the .js files is shutdown, the nodejs code reports error/s (font has been reduced in

order to void too many text line wraparounds):

C:\Users\fernando\MyDir\catedras\mongodb\nodejs>node connect.js

C:\Users\fernando\MyDir\catedras\mongodb\nodejs\node_modules\mongodb\lib\mongo_client.js:338

 throw err

 ^

AssertionError: null == { MongoError: failed to connect to server [192.168.0.160:27017] on first connect

[MongoError: connect ETIMEDOUT 192.168.0.160:27

 at C:\Users\fernando\MyDir\catedras\mongodb\nodejs\connect.js:6:10

 at connectCallback

(C:\Users\fernando\MyDir\catedras\mongodb\nodejs\node_modules\mongodb\lib\mongo_client.js:428:5)

 at C:\Users\fernando\MyDir\catedras\mongodb\nodejs\node_modules\mongodb\lib\mongo_client.js:335:11

 at _combinedTickCallback (internal/process/next_tick.js:73:7)

 at process._tickCallback (internal/process/next_tick.js:104:9)

Otherwise, if the server explicitly referenced in the .js file is not the replica set primary node, the nodejs

code reports error/s too:

Actually, the second error reported at the nodejs client side is similar to that reported at the mongo console

of the replica set secondary nodes, as shown in Fig. 12, where the error report indicates a possible solution

for reading/querying the database on secondary nodes (slaveOk=true).

Figure 12: Error at Replica Set Secondary Node Trying to Query the Database.

The description so far covers only basic operations (there are many more details, such as those in [8]) and

it does not use/take advantage of a mongo replica set at the client side. The replica set provides high
availability in case of some network and server errors and possible performance enhancement for reading

operations. The given code examples do not take advantage of such high availability facilities because the

connection is made with a single mongodb server, not with a replica set. The next section provides some
simple examples and explanations on a nodejs client (and setting apart the javascript code, any other client)

connecting to a replica set, not a single server.

4.- A nodejs Client of a mongodb Replica Set “Server”

Connecting a nodejs application to a mongodb replica set [9] implies using a specific URI format [10]. The

nodejs driver has specific options too, as described at [11], some of which are related to replica set
connections. The minimum suggested information in the URI provided for the connection to a replica set

would be the list of servers (referred to as “a seedlist of replica set members”) and the replica set name.

Taking into account we have a mongodb replica set “up & running” as described in [tecrepl], i.e.:

C:\Users\fernando\MyDir\catedras\mongodb\mynodejs>node insert.js

C:\Users\fernando\MyDir\catedras\mongodb\mynodejs\node-v6.10.1-win-x64\node_modules\mongodb\lib\utils.js:123

 process.nextTick(function() { throw err; });

 ^

AssertionError: { MongoError: not master

 at Function.MongoError.create (C:\Users\fernando\MyDir\catedras\mongodb\mynodejs\node-v6.10.1-win-x == null

 at C:\Users\fernando\MyDir\catedras\mongodb\mynodejs\insert.js:30:12

 at C:\Users\fernando\MyDir\catedras\mongodb\mynodejs\node-v6.10.1-win-

x64\node_modules\mongodb\lib\collection.js:431:32

 at handleCallback (C:\Users\fernando\MyDir\catedras\mongodb\mynodejs\node-v6.10.1-win-

x64\node_modules\mongodb\lib\utils.js:120:56)

 at C:\Users\fernando\MyDir\catedras\mongodb\mynodejs\node-v6.10.1-win-

x64\node_modules\mongodb\lib\collection.js:736:20

 at C:\Users\fernando\MyDir\catedras\mongodb\mynodejs\node-v6.10.1-win-

x64\node_modules\mongodb\node_modules\mongodb-core\lib\connection\pool.js:461:18

 at _combinedTickCallback (internal/process/next_tick.js:73:7)

 at process._tickCallback (internal/process/next_tick.js:104:9)

• Computers IPs 192.168.0.160, 192.168.0.161, and 192.168.0.162,

• Every mongodb server (mongod) using the server default port,

• The replica set name is “myreplica”,

• The databse is ‘test’

the URL we should use for the client connection should be

'mongodb://192.168.0.160,192.168.0.161,192.168.0.162/test?replicaSet=myreplica'
Thus, the “complete” javascript code for a client connection to a mongodb replica set, connectrepl.js, would

be as follows

connectrepl.js

===

var MongoClient = require('mongodb').MongoClient;

var assert = require('assert');

var url = 'mongodb://192.168.0.160,192.168.0.161,192.168.0.162/test?replicaSet=myreplica';

MongoClient.connect(url, function(err, db) {

 assert.equal(null, err);

 console.log("Connected correctly to server.");

 db.close();

});

===

which is identical to the one given as connect.js except for the url value (now referencing the replica whole

set, including the replica set name). Take into account that the so called seedlist of replica set members is

given without any identification of primary and/or secondary nodes, as expected, since it is not possible to

know in advance which of the nodes will be the primary one. Fig. 13 shows that the node with IP

192.168.0.160 the current replica set primary node, and Fig. 14 shows that the connection is successful.

Figure 13: Replica Set Primary Node: 192.168.0.160.

Figure 14: connectrepl.js Successful Connection to the Replica Set.

Furthermore, Fig. 15 shows the scenario in which the node with IP 192.168.0.161 is the current replica set

primary node, and the connectrepl.js is still successful, it connects to the replica set independently of the

current replica set primary node.

Figure 15: Replica Set Primary Node: 192.168.0.161.

By default, the mongodb client operates with the replica set primary node, i.e. read and write database

operations are made in the replica set primary node. Among the settings that can be changed, read operations

can be made in replica set secondary nodes if required, given the proper connection setting/s option/s, e.g.

Setting the readPreference value to one of

ReadPreference.PRIMARY

ReadPreference.PRIMARY_PREFERRED

ReadPreference.SECONDARY

ReadPreference.SECONDARY_PREFERRED

ReadPreference.NEAREST

(given as a MongoClient.connect function option [11]).

5.- Conclusions and Further Work

We have set up a nodejs execution environment, installed the mongodb driver so that it is possible to

connect to a mongodb database, and show how to connect to a mongodb replica set in particular (i.e. a

replicated mongodb database). The nodejs installation and project management mostly through nom has a

lot of details not covered in this step-by-step guide. Instead, we have restricted to the simplest environment/

installation in a Windows computer. We think each nodejs developer has a predefined development

environment and it would be almost impossible to cover them all.

We have used a mongodb replica set already installed so that it was possible to show how to make

connections and how the client is transparently managed by the mongodb replica set independently of the

details of the current replica set primary node. We know this is just the minimum detail covered in this

report regarding mongodb replica set databases. Actually, this step-by-step guide allows to have an

experimentation environment we think would be very useful to analyze at least mongodb high availability

facilities to clients (nodejs clients in this case). In this context, the guide we presented is only about

infrastructure, the interesting details will be obtained by thoroughly thought through experiments that

should provide insight on specific performance details.

References

[1] Fernando G. Tinetti, Agustín Terruzzi, "Install a mongodb Replica Set: 1 Primary Node and 2 Secondary

Nodes", Technical Report BDD-01-2017, March 2017.

 http://fernando.bl.ee/reptec/repl-mongo.pdf

[2] 2017 Node.js Foundation, “Download | Node,js”,

 https://nodejs.org/en/download/

[3] Tierney Cyren, Installing Node.js Tutorial: Windows, 2017

 https://nodesource.com/blog/installing-nodejs-tutorial-windows/

[4] NPM Inc., Get npm,

 https://www.npmjs.com/get-npm
[5] Installing Node.js and updating npm,

 https://docs.npmjs.com/getting-started/installing-node

[6] MongoDB, Inc., Node.js Driver - Getting Started With MongoDB 3.0.4,
 https://docs.mongodb.com/getting-started/node/client/

[7] MongoDB, Inc., Insert Data with Node.js - Getting Started With MongoDB 3.0.4,

 https://docs.mongodb.com/getting-started/node/insert/
[8] Tutorials, CRUD Operations,

 http://mongodb.github.io/node-mongodb-native/2.2/tutorials/crud/

[9] Tutorials, Connect to MongoDB,

 http://mongodb.github.io/node-mongodb-native/2.2/tutorials/connect/
[10] MongoDB, Inc., Connection String URI Format, MongoDB Manual 3.4,

 https://docs.mongodb.com/manual/reference/connection-string/

[11] URI Connection Settings,
 http://mongodb.github.io/node-mongodb-native/2.2/reference/connecting/connection-settings/

